| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.3v | Structured version Visualization version GIF version | ||
| Description: Version of 19.3 2069 with a dv condition, requiring fewer axioms. Any formula can be universally quantified using a variable which it does not contain. See also 19.9v 1896. (Contributed by Anthony Hart, 13-Sep-2011.) Remove dependency on ax-7 1935. (Revised by Wolf Lammen, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| 19.3v | ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1753 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 19.9v 1896 | . . 3 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ 𝜑) | |
| 3 | 2 | con2bii 347 | . 2 ⊢ (𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) |
| 4 | 1, 3 | bitr4i 267 | 1 ⊢ (∀𝑥𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: spvw 1898 19.27v 1908 19.28v 1909 19.37v 1910 axrep1 4772 kmlem14 8985 zfcndrep 9436 zfcndpow 9438 zfcndac 9441 bj-axrep1 32788 bj-snsetex 32951 iooelexlt 33210 dford4 37596 relexp0eq 37993 |
| Copyright terms: Public domain | W3C validator |