MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37v Structured version   Visualization version   GIF version

Theorem 19.37v 1910
Description: Version of 19.37 2100 with a dv condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
19.37v (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.37v
StepHypRef Expression
1 19.35 1805 . 2 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
2 19.3v 1897 . . 3 (∀𝑥𝜑𝜑)
32imbi1i 339 . 2 ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (𝜑 → ∃𝑥𝜓))
41, 3bitri 264 1 (∃𝑥(𝜑𝜓) ↔ (𝜑 → ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by:  19.37iv  1911  eqvincg  3329  axrep5  4776  fvn0ssdmfun  6350  kmlem14  8985  kmlem15  8986  bnj132  30792  bnj1098  30854  bnj150  30946  bnj865  30993  bnj996  31025  bnj1021  31034  bnj1090  31047  bnj1176  31073  bj-axrep5  32792  cnvssco  37912  refimssco  37913  19.37vv  38584  pm11.61  38593  relopabVD  39137  rmoanim  41179
  Copyright terms: Public domain W3C validator