Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford4 Structured version   Visualization version   GIF version

Theorem dford4 37596
Description: dford3 37595 expressed in primitives to demonstrate shortness. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford4 (Ord 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
Distinct variable group:   𝑎,𝑏,𝑐,𝑁

Proof of Theorem dford4
StepHypRef Expression
1 dford3 37595 . 2 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎))
2 dftr2 4754 . . . . 5 (Tr 𝑁 ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
3 19.3v 1897 . . . . . . . 8 (∀𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑎𝑁𝑏𝑎) → 𝑏𝑁))
4 ancom 466 . . . . . . . . 9 ((𝑎𝑁𝑏𝑎) ↔ (𝑏𝑎𝑎𝑁))
54imbi1i 339 . . . . . . . 8 (((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
63, 5bitri 264 . . . . . . 7 (∀𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
762albii 1748 . . . . . 6 (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ∀𝑎𝑏((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
8 alcom 2037 . . . . . 6 (∀𝑎𝑏((𝑏𝑎𝑎𝑁) → 𝑏𝑁) ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
97, 8bitri 264 . . . . 5 (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
102, 9bitr4i 267 . . . 4 (Tr 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁))
11 df-ral 2917 . . . . 5 (∀𝑎𝑁 Tr 𝑎 ↔ ∀𝑎(𝑎𝑁 → Tr 𝑎))
12 dftr2 4754 . . . . . . . . 9 (Tr 𝑎 ↔ ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎))
1312imbi2i 326 . . . . . . . 8 ((𝑎𝑁 → Tr 𝑎) ↔ (𝑎𝑁 → ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
14 nfv 1843 . . . . . . . . 9 𝑐 𝑎𝑁
15 nfv 1843 . . . . . . . . 9 𝑏 𝑎𝑁
1614, 1519.21-2 2078 . . . . . . . 8 (∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ (𝑎𝑁 → ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
1713, 16bitr4i 267 . . . . . . 7 ((𝑎𝑁 → Tr 𝑎) ↔ ∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
18 impexp 462 . . . . . . . . . 10 (((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) → 𝑐𝑎) ↔ (𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
19 ancom 466 . . . . . . . . . . . . 13 ((𝑐𝑏𝑏𝑎) ↔ (𝑏𝑎𝑐𝑏))
2019anbi2i 730 . . . . . . . . . . . 12 ((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) ↔ (𝑎𝑁 ∧ (𝑏𝑎𝑐𝑏)))
21 anass 681 . . . . . . . . . . . 12 (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) ↔ (𝑎𝑁 ∧ (𝑏𝑎𝑐𝑏)))
2220, 21bitr4i 267 . . . . . . . . . . 11 ((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) ↔ ((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏))
2322imbi1i 339 . . . . . . . . . 10 (((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) → 𝑐𝑎) ↔ (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎))
2418, 23bitr3i 266 . . . . . . . . 9 ((𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎))
25 impexp 462 . . . . . . . . 9 ((((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎) ↔ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
2624, 25bitri 264 . . . . . . . 8 ((𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
27262albii 1748 . . . . . . 7 (∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ ∀𝑐𝑏((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
28 alcom 2037 . . . . . . 7 (∀𝑐𝑏((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
2917, 27, 283bitri 286 . . . . . 6 ((𝑎𝑁 → Tr 𝑎) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3029albii 1747 . . . . 5 (∀𝑎(𝑎𝑁 → Tr 𝑎) ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3111, 30bitri 264 . . . 4 (∀𝑎𝑁 Tr 𝑎 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3210, 31anbi12i 733 . . 3 ((Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎) ↔ (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
33 19.26 1798 . . 3 (∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
3432, 33bitr4i 267 . 2 ((Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎) ↔ ∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
35 19.26-2 1799 . . . 4 (∀𝑏𝑐(((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ (∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
36 pm4.76 910 . . . . 5 ((((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
37362albii 1748 . . . 4 (∀𝑏𝑐(((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
3835, 37bitr3i 266 . . 3 ((∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
3938albii 1747 . 2 (∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
401, 34, 393bitri 286 1 (Ord 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wcel 1990  wral 2912  Tr wtr 4752  Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator