MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu2 Structured version   Visualization version   GIF version

Theorem 2eu2 2554
Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
Assertion
Ref Expression
2eu2 (∃!𝑦𝑥𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ ∃!𝑥𝑦𝜑))

Proof of Theorem 2eu2
StepHypRef Expression
1 eumo 2499 . . 3 (∃!𝑦𝑥𝜑 → ∃*𝑦𝑥𝜑)
2 2moex 2543 . . 3 (∃*𝑦𝑥𝜑 → ∀𝑥∃*𝑦𝜑)
3 2eu1 2553 . . . 4 (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑)))
4 simpl 473 . . . 4 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥𝑦𝜑)
53, 4syl6bi 243 . . 3 (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥𝑦𝜑))
61, 2, 53syl 18 . 2 (∃!𝑦𝑥𝜑 → (∃!𝑥∃!𝑦𝜑 → ∃!𝑥𝑦𝜑))
7 2exeu 2549 . . 3 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)
87expcom 451 . 2 (∃!𝑦𝑥𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑥∃!𝑦𝜑))
96, 8impbid 202 1 (∃!𝑦𝑥𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ ∃!𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wex 1704  ∃!weu 2470  ∃*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475
This theorem is referenced by:  2eu8  2560
  Copyright terms: Public domain W3C validator