| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2eu2 | Structured version Visualization version Unicode version | ||
| Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001.) |
| Ref | Expression |
|---|---|
| 2eu2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo 2499 |
. . 3
| |
| 2 | 2moex 2543 |
. . 3
| |
| 3 | 2eu1 2553 |
. . . 4
| |
| 4 | simpl 473 |
. . . 4
| |
| 5 | 3, 4 | syl6bi 243 |
. . 3
|
| 6 | 1, 2, 5 | 3syl 18 |
. 2
|
| 7 | 2exeu 2549 |
. . 3
| |
| 8 | 7 | expcom 451 |
. 2
|
| 9 | 6, 8 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: 2eu8 2560 |
| Copyright terms: Public domain | W3C validator |