![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndci | Structured version Visualization version GIF version |
Description: A countable basis generates a second-countable topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
2ndci | ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2nd𝜔) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ∈ TopBases) | |
2 | simpr 477 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → 𝐵 ≼ ω) | |
3 | eqidd 2623 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) = (topGen‘𝐵)) | |
4 | breq1 4656 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
5 | fveq2 6191 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (topGen‘𝑥) = (topGen‘𝐵)) | |
6 | 5 | eqeq1d 2624 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((topGen‘𝑥) = (topGen‘𝐵) ↔ (topGen‘𝐵) = (topGen‘𝐵))) |
7 | 4, 6 | anbi12d 747 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵)) ↔ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵)))) |
8 | 7 | rspcev 3309 | . . 3 ⊢ ((𝐵 ∈ TopBases ∧ (𝐵 ≼ ω ∧ (topGen‘𝐵) = (topGen‘𝐵))) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) |
9 | 1, 2, 3, 8 | syl12anc 1324 | . 2 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) |
10 | is2ndc 21249 | . 2 ⊢ ((topGen‘𝐵) ∈ 2nd𝜔 ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = (topGen‘𝐵))) | |
11 | 9, 10 | sylibr 224 | 1 ⊢ ((𝐵 ∈ TopBases ∧ 𝐵 ≼ ω) → (topGen‘𝐵) ∈ 2nd𝜔) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 class class class wbr 4653 ‘cfv 5888 ωcom 7065 ≼ cdom 7953 topGenctg 16098 TopBasesctb 20749 2nd𝜔c2ndc 21241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-2ndc 21243 |
This theorem is referenced by: 2ndcrest 21257 2ndcomap 21261 dis2ndc 21263 dis1stc 21302 tx2ndc 21454 met2ndci 22327 re2ndc 22604 |
Copyright terms: Public domain | W3C validator |