MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  is2ndc Structured version   Visualization version   GIF version

Theorem is2ndc 21249
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
is2ndc (𝐽 ∈ 2nd𝜔 ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
Distinct variable group:   𝑥,𝐽

Proof of Theorem is2ndc
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-2ndc 21243 . . 3 2nd𝜔 = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)}
21eleq2i 2693 . 2 (𝐽 ∈ 2nd𝜔 ↔ 𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)})
3 simpr 477 . . . . 5 ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (topGen‘𝑥) = 𝐽)
4 fvex 6201 . . . . 5 (topGen‘𝑥) ∈ V
53, 4syl6eqelr 2710 . . . 4 ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V)
65rexlimivw 3029 . . 3 (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V)
7 eqeq2 2633 . . . . 5 (𝑗 = 𝐽 → ((topGen‘𝑥) = 𝑗 ↔ (topGen‘𝑥) = 𝐽))
87anbi2d 740 . . . 4 (𝑗 = 𝐽 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)))
98rexbidv 3052 . . 3 (𝑗 = 𝐽 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)))
106, 9elab3 3358 . 2 (𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
112, 10bitri 264 1 (𝐽 ∈ 2nd𝜔 ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200   class class class wbr 4653  cfv 5888  ωcom 7065  cdom 7953  topGenctg 16098  TopBasesctb 20749  2nd𝜔c2ndc 21241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896  df-2ndc 21243
This theorem is referenced by:  2ndctop  21250  2ndci  21251  2ndcsb  21252  2ndcredom  21253  2ndc1stc  21254  2ndcrest  21257  2ndcctbss  21258  2ndcdisj  21259  2ndcomap  21261  2ndcsep  21262  dis2ndc  21263  tx2ndc  21454
  Copyright terms: Public domain W3C validator