![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > is2ndc | Structured version Visualization version GIF version |
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010.) (Revised by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
is2ndc | ⊢ (𝐽 ∈ 2nd𝜔 ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2ndc 21243 | . . 3 ⊢ 2nd𝜔 = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} | |
2 | 1 | eleq2i 2693 | . 2 ⊢ (𝐽 ∈ 2nd𝜔 ↔ 𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)}) |
3 | simpr 477 | . . . . 5 ⊢ ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → (topGen‘𝑥) = 𝐽) | |
4 | fvex 6201 | . . . . 5 ⊢ (topGen‘𝑥) ∈ V | |
5 | 3, 4 | syl6eqelr 2710 | . . . 4 ⊢ ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V) |
6 | 5 | rexlimivw 3029 | . . 3 ⊢ (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ∈ V) |
7 | eqeq2 2633 | . . . . 5 ⊢ (𝑗 = 𝐽 → ((topGen‘𝑥) = 𝑗 ↔ (topGen‘𝑥) = 𝐽)) | |
8 | 7 | anbi2d 740 | . . . 4 ⊢ (𝑗 = 𝐽 → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
9 | 8 | rexbidv 3052 | . . 3 ⊢ (𝑗 = 𝐽 → (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗) ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽))) |
10 | 6, 9 | elab3 3358 | . 2 ⊢ (𝐽 ∈ {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
11 | 2, 10 | bitri 264 | 1 ⊢ (𝐽 ∈ 2nd𝜔 ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ∃wrex 2913 Vcvv 3200 class class class wbr 4653 ‘cfv 5888 ωcom 7065 ≼ cdom 7953 topGenctg 16098 TopBasesctb 20749 2nd𝜔c2ndc 21241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 df-fv 5896 df-2ndc 21243 |
This theorem is referenced by: 2ndctop 21250 2ndci 21251 2ndcsb 21252 2ndcredom 21253 2ndc1stc 21254 2ndcrest 21257 2ndcctbss 21258 2ndcdisj 21259 2ndcomap 21261 2ndcsep 21262 dis2ndc 21263 tx2ndc 21454 |
Copyright terms: Public domain | W3C validator |