MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pwne Structured version   Visualization version   GIF version

Theorem 2pwne 8116
Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008.)
Assertion
Ref Expression
2pwne (𝐴𝑉 → 𝒫 𝒫 𝐴𝐴)

Proof of Theorem 2pwne
StepHypRef Expression
1 sdomirr 8097 . . 3 ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 canth2g 8114 . . . . 5 (𝐴𝑉𝐴 ≺ 𝒫 𝐴)
3 pwexg 4850 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
4 canth2g 8114 . . . . . 6 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
53, 4syl 17 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
6 sdomtr 8098 . . . . 5 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴)
72, 5, 6syl2anc 693 . . . 4 (𝐴𝑉𝐴 ≺ 𝒫 𝒫 𝐴)
8 breq1 4656 . . . 4 (𝒫 𝒫 𝐴 = 𝐴 → (𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴𝐴 ≺ 𝒫 𝒫 𝐴))
97, 8syl5ibrcom 237 . . 3 (𝐴𝑉 → (𝒫 𝒫 𝐴 = 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
101, 9mtoi 190 . 2 (𝐴𝑉 → ¬ 𝒫 𝒫 𝐴 = 𝐴)
1110neqned 2801 1 (𝐴𝑉 → 𝒫 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  𝒫 cpw 4158   class class class wbr 4653  csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator