| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anrev | Structured version Visualization version GIF version | ||
| Description: Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anrev | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1045 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 2 | 3anrot 1043 | . 2 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 3 | 1, 2 | bitr4i 267 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜒 ∧ 𝜓 ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: 3com13 1270 an33rean 1446 nnmcan 7714 odupos 17135 wwlks2onsym 26851 frgr3v 27139 bnj345 30780 bnj1098 30854 pocnv 31653 btwnswapid2 32125 colinbtwnle 32225 uunT11p2 39025 uunT12p5 39031 uun2221p2 39042 |
| Copyright terms: Public domain | W3C validator |