Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psgnfzto1st Structured version   Visualization version   GIF version

Theorem psgnfzto1st 29855
Description: The permutation sign for moving one element to the first position. (Contributed by Thierry Arnoux, 21-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
psgnfzto1st.g 𝐺 = (SymGrp‘𝐷)
psgnfzto1st.b 𝐵 = (Base‘𝐺)
psgnfzto1st.s 𝑆 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfzto1st (𝐼𝐷 → (𝑆𝑃) = (-1↑(𝐼 + 1)))
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁   𝐵,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐺(𝑖)

Proof of Theorem psgnfzto1st
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfz1b 12409 . . . . 5 (𝐼 ∈ (1...𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
21biimpi 206 . . . 4 (𝐼 ∈ (1...𝑁) → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
3 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
42, 3eleq2s 2719 . . 3 (𝐼𝐷 → (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
5 3ancoma 1045 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) ↔ (𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐼𝑁))
64, 5sylibr 224 . 2 (𝐼𝐷 → (𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁))
7 df-3an 1039 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) ↔ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼𝑁))
8 breq1 4656 . . . . . 6 (𝑚 = 1 → (𝑚𝑁 ↔ 1 ≤ 𝑁))
9 id 22 . . . . . . . . . 10 (𝑚 = 1 → 𝑚 = 1)
10 breq2 4657 . . . . . . . . . . 11 (𝑚 = 1 → (𝑖𝑚𝑖 ≤ 1))
1110ifbid 4108 . . . . . . . . . 10 (𝑚 = 1 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))
129, 11ifeq12d 4106 . . . . . . . . 9 (𝑚 = 1 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))
1312mpteq2dv 4745 . . . . . . . 8 (𝑚 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))))
1413fveq2d 6195 . . . . . . 7 (𝑚 = 1 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))))
15 oveq1 6657 . . . . . . . 8 (𝑚 = 1 → (𝑚 + 1) = (1 + 1))
1615oveq2d 6666 . . . . . . 7 (𝑚 = 1 → (-1↑(𝑚 + 1)) = (-1↑(1 + 1)))
1714, 16eqeq12d 2637 . . . . . 6 (𝑚 = 1 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))))
188, 17imbi12d 334 . . . . 5 (𝑚 = 1 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (1 ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1)))))
19 breq1 4656 . . . . . 6 (𝑚 = 𝑛 → (𝑚𝑁𝑛𝑁))
20 id 22 . . . . . . . . . 10 (𝑚 = 𝑛𝑚 = 𝑛)
21 breq2 4657 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑖𝑚𝑖𝑛))
2221ifbid 4108 . . . . . . . . . 10 (𝑚 = 𝑛 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖𝑛, (𝑖 − 1), 𝑖))
2320, 22ifeq12d 4106 . . . . . . . . 9 (𝑚 = 𝑛 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))
2423mpteq2dv 4745 . . . . . . . 8 (𝑚 = 𝑛 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))
2524fveq2d 6195 . . . . . . 7 (𝑚 = 𝑛 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
26 oveq1 6657 . . . . . . . 8 (𝑚 = 𝑛 → (𝑚 + 1) = (𝑛 + 1))
2726oveq2d 6666 . . . . . . 7 (𝑚 = 𝑛 → (-1↑(𝑚 + 1)) = (-1↑(𝑛 + 1)))
2825, 27eqeq12d 2637 . . . . . 6 (𝑚 = 𝑛 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1))))
2919, 28imbi12d 334 . . . . 5 (𝑚 = 𝑛 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))))
30 breq1 4656 . . . . . 6 (𝑚 = (𝑛 + 1) → (𝑚𝑁 ↔ (𝑛 + 1) ≤ 𝑁))
31 id 22 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → 𝑚 = (𝑛 + 1))
32 breq2 4657 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → (𝑖𝑚𝑖 ≤ (𝑛 + 1)))
3332ifbid 4108 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))
3431, 33ifeq12d 4106 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))
3534mpteq2dv 4745 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))))
3635fveq2d 6195 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))))
37 oveq1 6657 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (𝑚 + 1) = ((𝑛 + 1) + 1))
3837oveq2d 6666 . . . . . . 7 (𝑚 = (𝑛 + 1) → (-1↑(𝑚 + 1)) = (-1↑((𝑛 + 1) + 1)))
3936, 38eqeq12d 2637 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1))))
4030, 39imbi12d 334 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ ((𝑛 + 1) ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1)))))
41 breq1 4656 . . . . . 6 (𝑚 = 𝐼 → (𝑚𝑁𝐼𝑁))
42 id 22 . . . . . . . . . . 11 (𝑚 = 𝐼𝑚 = 𝐼)
43 breq2 4657 . . . . . . . . . . . 12 (𝑚 = 𝐼 → (𝑖𝑚𝑖𝐼))
4443ifbid 4108 . . . . . . . . . . 11 (𝑚 = 𝐼 → if(𝑖𝑚, (𝑖 − 1), 𝑖) = if(𝑖𝐼, (𝑖 − 1), 𝑖))
4542, 44ifeq12d 4106 . . . . . . . . . 10 (𝑚 = 𝐼 → if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)) = if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
4645mpteq2dv 4745 . . . . . . . . 9 (𝑚 = 𝐼 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))))
47 psgnfzto1st.p . . . . . . . . 9 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
4846, 47syl6eqr 2674 . . . . . . . 8 (𝑚 = 𝐼 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖))) = 𝑃)
4948fveq2d 6195 . . . . . . 7 (𝑚 = 𝐼 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (𝑆𝑃))
50 oveq1 6657 . . . . . . . 8 (𝑚 = 𝐼 → (𝑚 + 1) = (𝐼 + 1))
5150oveq2d 6666 . . . . . . 7 (𝑚 = 𝐼 → (-1↑(𝑚 + 1)) = (-1↑(𝐼 + 1)))
5249, 51eqeq12d 2637 . . . . . 6 (𝑚 = 𝐼 → ((𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1)) ↔ (𝑆𝑃) = (-1↑(𝐼 + 1))))
5341, 52imbi12d 334 . . . . 5 (𝑚 = 𝐼 → ((𝑚𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑚, if(𝑖𝑚, (𝑖 − 1), 𝑖)))) = (-1↑(𝑚 + 1))) ↔ (𝐼𝑁 → (𝑆𝑃) = (-1↑(𝐼 + 1)))))
54 fzfi 12771 . . . . . . . . 9 (1...𝑁) ∈ Fin
553, 54eqeltri 2697 . . . . . . . 8 𝐷 ∈ Fin
56 psgnfzto1st.s . . . . . . . . 9 𝑆 = (pmSgn‘𝐷)
5756psgnid 29847 . . . . . . . 8 (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1)
5855, 57ax-mp 5 . . . . . . 7 (𝑆‘( I ↾ 𝐷)) = 1
59 eqid 2622 . . . . . . . . 9 1 = 1
60 eqid 2622 . . . . . . . . . 10 (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))
613, 60fzto1st1 29852 . . . . . . . . 9 (1 = 1 → (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷))
6259, 61ax-mp 5 . . . . . . . 8 (𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖))) = ( I ↾ 𝐷)
6362fveq2i 6194 . . . . . . 7 (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (𝑆‘( I ↾ 𝐷))
64 1p1e2 11134 . . . . . . . . 9 (1 + 1) = 2
6564oveq2i 6661 . . . . . . . 8 (-1↑(1 + 1)) = (-1↑2)
66 neg1sqe1 12959 . . . . . . . 8 (-1↑2) = 1
6765, 66eqtri 2644 . . . . . . 7 (-1↑(1 + 1)) = 1
6858, 63, 673eqtr4i 2654 . . . . . 6 (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))
69682a1i 12 . . . . 5 (𝑁 ∈ ℕ → (1 ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 1, if(𝑖 ≤ 1, (𝑖 − 1), 𝑖)))) = (-1↑(1 + 1))))
70 simplr 792 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℕ)
7170peano2nnd 11037 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℕ)
72 simpll 790 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ)
73 simpr 477 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ≤ 𝑁)
7471, 72, 733jca 1242 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁))
75 elfz1b 12409 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (1...𝑁) ↔ ((𝑛 + 1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑛 + 1) ≤ 𝑁))
7674, 75sylibr 224 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ (1...𝑁))
7776, 3syl6eleqr 2712 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ 𝐷)
783psgnfzto1stlem 29850 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
7970, 77, 78syl2anc 693 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
8079adantlr 751 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖))) = (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))))
8180fveq2d 6195 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
8255a1i 11 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝐷 ∈ Fin)
83 eqid 2622 . . . . . . . . . 10 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
84 psgnfzto1st.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
85 psgnfzto1st.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
8683, 84, 85symgtrf 17889 . . . . . . . . 9 ran (pmTrsp‘𝐷) ⊆ 𝐵
87 eqid 2622 . . . . . . . . . . . 12 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
883, 87pmtrto1cl 29849 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ 𝐷) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
8970, 77, 88syl2anc 693 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
9089adantlr 751 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷))
9186, 90sseldi 3601 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵)
9270nnred 11035 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ ℝ)
93 1red 10055 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 1 ∈ ℝ)
9492, 93readdcld 10069 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 + 1) ∈ ℝ)
9572nnred 11035 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ)
9692lep1d 10955 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ≤ (𝑛 + 1))
9792, 94, 95, 96, 73letrd 10194 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝑁)
9870, 72, 973jca 1242 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛𝑁))
99 elfz1b 12409 . . . . . . . . . . . 12 (𝑛 ∈ (1...𝑁) ↔ (𝑛 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑛𝑁))
10098, 99sylibr 224 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛 ∈ (1...𝑁))
101100, 3syl6eleqr 2712 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝐷)
102101adantlr 751 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝐷)
103 eqid 2622 . . . . . . . . . 10 (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) = (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))
1043, 103, 84, 85fzto1st 29853 . . . . . . . . 9 (𝑛𝐷 → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)
105102, 104syl 17 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵)
10684, 56, 85psgnco 19929 . . . . . . . 8 ((𝐷 ∈ Fin ∧ ((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ 𝐵 ∧ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))) ∈ 𝐵) → (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
10782, 91, 105, 106syl3anc 1326 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∘ (𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))))
10884, 83, 56psgnpmtr 17930 . . . . . . . . . . 11 (((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)}) ∈ ran (pmTrsp‘𝐷) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
10989, 108syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
110109adantlr 751 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) = -1)
11197adantlr 751 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → 𝑛𝑁)
112 simplr 792 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1))))
113111, 112mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))
114110, 113oveq12d 6668 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = (-1 · (-1↑(𝑛 + 1))))
115 neg1cn 11124 . . . . . . . . . . 11 -1 ∈ ℂ
116 peano2nn 11032 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
117116nnnn0d 11351 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ0)
118 expp1 12867 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ (𝑛 + 1) ∈ ℕ0) → (-1↑((𝑛 + 1) + 1)) = ((-1↑(𝑛 + 1)) · -1))
119115, 117, 118sylancr 695 . . . . . . . . . 10 (𝑛 ∈ ℕ → (-1↑((𝑛 + 1) + 1)) = ((-1↑(𝑛 + 1)) · -1))
120115a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → -1 ∈ ℂ)
121120, 117expcld 13008 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (-1↑(𝑛 + 1)) ∈ ℂ)
122121, 120mulcomd 10061 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((-1↑(𝑛 + 1)) · -1) = (-1 · (-1↑(𝑛 + 1))))
123119, 122eqtr2d 2657 . . . . . . . . 9 (𝑛 ∈ ℕ → (-1 · (-1↑(𝑛 + 1))) = (-1↑((𝑛 + 1) + 1)))
124123ad3antlr 767 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (-1 · (-1↑(𝑛 + 1))) = (-1↑((𝑛 + 1) + 1)))
125114, 124eqtrd 2656 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → ((𝑆‘((pmTrsp‘𝐷)‘{𝑛, (𝑛 + 1)})) · (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖))))) = (-1↑((𝑛 + 1) + 1)))
12681, 107, 1253eqtrd 2660 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) ∧ (𝑛 + 1) ≤ 𝑁) → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1)))
127126ex 450 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝑛𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, 𝑛, if(𝑖𝑛, (𝑖 − 1), 𝑖)))) = (-1↑(𝑛 + 1)))) → ((𝑛 + 1) ≤ 𝑁 → (𝑆‘(𝑖𝐷 ↦ if(𝑖 = 1, (𝑛 + 1), if(𝑖 ≤ (𝑛 + 1), (𝑖 − 1), 𝑖)))) = (-1↑((𝑛 + 1) + 1))))
12818, 29, 40, 53, 69, 127nnindd 29566 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝐼𝑁 → (𝑆𝑃) = (-1↑(𝐼 + 1))))
129128imp 445 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝐼𝑁) → (𝑆𝑃) = (-1↑(𝐼 + 1)))
1307, 129sylbi 207 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼𝑁) → (𝑆𝑃) = (-1↑(𝐼 + 1)))
1316, 130syl 17 1 (𝐼𝐷 → (𝑆𝑃) = (-1↑(𝐼 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  ifcif 4086  {cpr 4179   class class class wbr 4653  cmpt 4729   I cid 5023  ran crn 5115  cres 5116  ccom 5118  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  cmin 10266  -cneg 10267  cn 11020  2c2 11070  0cn0 11292  ...cfz 12326  cexp 12860  Basecbs 15857  SymGrpcsymg 17797  pmTrspcpmtr 17861  pmSgncpsgn 17909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-cnfld 19747
This theorem is referenced by:  madjusmdetlem4  29896
  Copyright terms: Public domain W3C validator