| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pocnv | Structured version Visualization version GIF version | ||
| Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
| Ref | Expression |
|---|---|
| pocnv | ⊢ (𝑅 Po 𝐴 → ◡𝑅 Po 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poirr 5046 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | |
| 2 | vex 3203 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2, 2 | brcnv 5305 | . . 3 ⊢ (𝑥◡𝑅𝑥 ↔ 𝑥𝑅𝑥) |
| 4 | 1, 3 | sylnibr 319 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥◡𝑅𝑥) |
| 5 | 3anrev 1049 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | potr 5047 | . . . 4 ⊢ ((𝑅 Po 𝐴 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝑧𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑧𝑅𝑥)) | |
| 7 | 5, 6 | sylan2b 492 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑧𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑧𝑅𝑥)) |
| 8 | vex 3203 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 2, 8 | brcnv 5305 | . . . 4 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 10 | vex 3203 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 11 | 8, 10 | brcnv 5305 | . . . 4 ⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
| 12 | 9, 11 | anbi12ci 734 | . . 3 ⊢ ((𝑥◡𝑅𝑦 ∧ 𝑦◡𝑅𝑧) ↔ (𝑧𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
| 13 | 2, 10 | brcnv 5305 | . . 3 ⊢ (𝑥◡𝑅𝑧 ↔ 𝑧𝑅𝑥) |
| 14 | 7, 12, 13 | 3imtr4g 285 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥◡𝑅𝑦 ∧ 𝑦◡𝑅𝑧) → 𝑥◡𝑅𝑧)) |
| 15 | 4, 14 | ispod 5043 | 1 ⊢ (𝑅 Po 𝐴 → ◡𝑅 Po 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 ∈ wcel 1990 class class class wbr 4653 Po wpo 5033 ◡ccnv 5113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-po 5035 df-cnv 5122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |