Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pocnv Structured version   Visualization version   GIF version

Theorem pocnv 31653
Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
pocnv (𝑅 Po 𝐴𝑅 Po 𝐴)

Proof of Theorem pocnv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poirr 5046 . . 3 ((𝑅 Po 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
2 vex 3203 . . . 4 𝑥 ∈ V
32, 2brcnv 5305 . . 3 (𝑥𝑅𝑥𝑥𝑅𝑥)
41, 3sylnibr 319 . 2 ((𝑅 Po 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
5 3anrev 1049 . . . 4 ((𝑥𝐴𝑦𝐴𝑧𝐴) ↔ (𝑧𝐴𝑦𝐴𝑥𝐴))
6 potr 5047 . . . 4 ((𝑅 Po 𝐴 ∧ (𝑧𝐴𝑦𝐴𝑥𝐴)) → ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥))
75, 6sylan2b 492 . . 3 ((𝑅 Po 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥))
8 vex 3203 . . . . 5 𝑦 ∈ V
92, 8brcnv 5305 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
10 vex 3203 . . . . 5 𝑧 ∈ V
118, 10brcnv 5305 . . . 4 (𝑦𝑅𝑧𝑧𝑅𝑦)
129, 11anbi12ci 734 . . 3 ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑧𝑅𝑦𝑦𝑅𝑥))
132, 10brcnv 5305 . . 3 (𝑥𝑅𝑧𝑧𝑅𝑥)
147, 12, 133imtr4g 285 . 2 ((𝑅 Po 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
154, 14ispod 5043 1 (𝑅 Po 𝐴𝑅 Po 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990   class class class wbr 4653   Po wpo 5033  ccnv 5113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-po 5035  df-cnv 5122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator