Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1098 Structured version   Visualization version   GIF version

Theorem bnj1098 30854
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1098.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj1098 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
Distinct variable groups:   𝐷,𝑗   𝑖,𝑗   𝑗,𝑛
Allowed substitution hints:   𝐷(𝑖,𝑛)

Proof of Theorem bnj1098
StepHypRef Expression
1 3anrev 1049 . . . . . . 7 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ (𝑛𝐷𝑖𝑛𝑖 ≠ ∅))
2 df-3an 1039 . . . . . . 7 ((𝑛𝐷𝑖𝑛𝑖 ≠ ∅) ↔ ((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅))
31, 2bitri 264 . . . . . 6 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ ((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅))
4 simpr 477 . . . . . . . 8 ((𝑛𝐷𝑖𝑛) → 𝑖𝑛)
5 bnj1098.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
65bnj923 30838 . . . . . . . . 9 (𝑛𝐷𝑛 ∈ ω)
76adantr 481 . . . . . . . 8 ((𝑛𝐷𝑖𝑛) → 𝑛 ∈ ω)
8 elnn 7075 . . . . . . . 8 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
94, 7, 8syl2anc 693 . . . . . . 7 ((𝑛𝐷𝑖𝑛) → 𝑖 ∈ ω)
109anim1i 592 . . . . . 6 (((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅))
113, 10sylbi 207 . . . . 5 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅))
12 nnsuc 7082 . . . . 5 ((𝑖 ∈ ω ∧ 𝑖 ≠ ∅) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗)
1311, 12syl 17 . . . 4 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗)
14 df-rex 2918 . . . . . 6 (∃𝑗 ∈ ω 𝑖 = suc 𝑗 ↔ ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))
1514imbi2i 326 . . . . 5 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
16 19.37v 1910 . . . . 5 (∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
1715, 16bitr4i 267 . . . 4 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
1813, 17mpbi 220 . . 3 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))
19 ancr 572 . . 3 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷))))
2018, 19bnj101 30789 . 2 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)))
21 vex 3203 . . . . . 6 𝑗 ∈ V
2221bnj216 30800 . . . . 5 (𝑖 = suc 𝑗𝑗𝑖)
2322ad2antlr 763 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑗𝑖)
24 simpr2 1068 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑖𝑛)
25 3simpc 1060 . . . . . . 7 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑖𝑛𝑛𝐷))
2625ancomd 467 . . . . . 6 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑛𝐷𝑖𝑛))
2726adantl 482 . . . . 5 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → (𝑛𝐷𝑖𝑛))
28 nnord 7073 . . . . 5 (𝑛 ∈ ω → Ord 𝑛)
29 ordtr1 5767 . . . . 5 (Ord 𝑛 → ((𝑗𝑖𝑖𝑛) → 𝑗𝑛))
3027, 7, 28, 294syl 19 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → ((𝑗𝑖𝑖𝑛) → 𝑗𝑛))
3123, 24, 30mp2and 715 . . 3 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑗𝑛)
32 simplr 792 . . 3 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑖 = suc 𝑗)
3331, 32jca 554 . 2 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → (𝑗𝑛𝑖 = suc 𝑗))
3420, 33bnj1023 30851 1 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wrex 2913  cdif 3571  c0 3915  {csn 4177  Ord word 5722  suc csuc 5725  ωcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066
This theorem is referenced by:  bnj1110  31050  bnj1128  31058  bnj1145  31061
  Copyright terms: Public domain W3C validator