| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4exdistr | Structured version Visualization version GIF version | ||
| Description: Distribution of existential quantifiers in a quadruple conjunction. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Wolf Lammen, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| 4exdistr | ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v 1918 | . . . . 5 ⊢ (∃𝑤(𝜒 ∧ 𝜃) ↔ (𝜒 ∧ ∃𝑤𝜃)) | |
| 2 | 1 | anbi2i 730 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ ∃𝑤(𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ ∃𝑤𝜃))) |
| 3 | 19.42v 1918 | . . . 4 ⊢ (∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ ∃𝑤(𝜒 ∧ 𝜃))) | |
| 4 | df-3an 1039 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ ∃𝑤𝜃))) | |
| 5 | 2, 3, 4 | 3bitr4i 292 | . . 3 ⊢ (∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) |
| 6 | 5 | 3exbii 1776 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) |
| 7 | 3exdistr 1923 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) | |
| 8 | 6, 7 | bitri 264 | 1 ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |