| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3exbii | Structured version Visualization version GIF version | ||
| Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.) |
| Ref | Expression |
|---|---|
| 3exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3exbii | ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | exbii 1774 | . 2 ⊢ (∃𝑧𝜑 ↔ ∃𝑧𝜓) |
| 3 | 2 | 2exbii 1775 | 1 ⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: 4exdistr 1924 ceqsex6v 3248 oprabid 6677 dfoprab2 6701 dftpos3 7370 xpassen 8054 bnj916 31003 bnj917 31004 bnj983 31021 bnj996 31025 bnj1021 31034 bnj1033 31037 ellines 32259 |
| Copyright terms: Public domain | W3C validator |