| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4exdistr | Structured version Visualization version Unicode version | ||
| Description: Distribution of existential quantifiers in a quadruple conjunction. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Wolf Lammen, 20-Jan-2018.) |
| Ref | Expression |
|---|---|
| 4exdistr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v 1918 |
. . . . 5
| |
| 2 | 1 | anbi2i 730 |
. . . 4
|
| 3 | 19.42v 1918 |
. . . 4
| |
| 4 | df-3an 1039 |
. . . 4
| |
| 5 | 2, 3, 4 | 3bitr4i 292 |
. . 3
|
| 6 | 5 | 3exbii 1776 |
. 2
|
| 7 | 3exdistr 1923 |
. 2
| |
| 8 | 6, 7 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |