| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abeq2f | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction. In this version, the fact that 𝑥 is a non-free variable in 𝐴 is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.) |
| Ref | Expression |
|---|---|
| abeq2f.0 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| abeq2f | ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeq2f.0 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfcrii 2757 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) |
| 3 | hbab1 2611 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → ∀𝑥 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | 2, 3 | cleqh 2724 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) |
| 5 | abid 2610 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 6 | 5 | bibi2i 327 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 7 | 6 | albii 1747 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 8 | 4, 7 | bitri 264 | 1 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∀wal 1481 = wceq 1483 ∈ wcel 1990 {cab 2608 Ⅎwnfc 2751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: rabid2f 3119 mptfnf 6015 |
| Copyright terms: Public domain | W3C validator |