MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq2f Structured version   Visualization version   Unicode version

Theorem abeq2f 2792
Description: Equality of a class variable and a class abstraction. In this version, the fact that  x is a non-free variable in  A is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.)
Hypothesis
Ref Expression
abeq2f.0  |-  F/_ x A
Assertion
Ref Expression
abeq2f  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )

Proof of Theorem abeq2f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 abeq2f.0 . . . 4  |-  F/_ x A
21nfcrii 2757 . . 3  |-  ( y  e.  A  ->  A. x  y  e.  A )
3 hbab1 2611 . . 3  |-  ( y  e.  { x  | 
ph }  ->  A. x  y  e.  { x  |  ph } )
42, 3cleqh 2724 . 2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  x  e.  { x  | 
ph } ) )
5 abid 2610 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
65bibi2i 327 . . 3  |-  ( ( x  e.  A  <->  x  e.  { x  |  ph }
)  <->  ( x  e.  A  <->  ph ) )
76albii 1747 . 2  |-  ( A. x ( x  e.  A  <->  x  e.  { x  |  ph } )  <->  A. x
( x  e.  A  <->  ph ) )
84, 7bitri 264 1  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   F/_wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753
This theorem is referenced by:  rabid2f  3119  mptfnf  6015
  Copyright terms: Public domain W3C validator