MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrii Structured version   Visualization version   GIF version

Theorem nfcrii 2757
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcri.1 𝑥𝐴
Assertion
Ref Expression
nfcrii (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcrii
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcri.1 . . . 4 𝑥𝐴
2 nfcr 2756 . . . 4 (𝑥𝐴 → Ⅎ𝑥 𝑧𝐴)
31, 2ax-mp 5 . . 3 𝑥 𝑧𝐴
43nf5ri 2065 . 2 (𝑧𝐴 → ∀𝑥 𝑧𝐴)
54hblem 2731 1 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481  wnf 1708  wcel 1990  wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-cleq 2615  df-clel 2618  df-nfc 2753
This theorem is referenced by:  nfcri  2758  cleqf  2790  abeq2f  2792  bnj1230  30873  bnj1000  31011  bnj1204  31080  bnj1307  31091  bnj1311  31092  bnj1398  31102  bnj1466  31121  bnj1467  31122  bnj1523  31139
  Copyright terms: Public domain W3C validator