Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abfmpunirn Structured version   Visualization version   GIF version

Theorem abfmpunirn 29452
Description: Membership in a union of a mapping function-defined family of sets. (Contributed by Thierry Arnoux, 28-Sep-2016.)
Hypotheses
Ref Expression
abfmpunirn.1 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
abfmpunirn.2 {𝑦𝜑} ∈ V
abfmpunirn.3 (𝑦 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
abfmpunirn (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)

Proof of Theorem abfmpunirn
StepHypRef Expression
1 elex 3212 . 2 (𝐵 ran 𝐹𝐵 ∈ V)
2 abfmpunirn.2 . . . . . 6 {𝑦𝜑} ∈ V
3 abfmpunirn.1 . . . . . 6 𝐹 = (𝑥𝑉 ↦ {𝑦𝜑})
42, 3fnmpti 6022 . . . . 5 𝐹 Fn 𝑉
5 fnunirn 6511 . . . . 5 (𝐹 Fn 𝑉 → (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ (𝐹𝑥)))
64, 5ax-mp 5 . . . 4 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ (𝐹𝑥))
73fvmpt2 6291 . . . . . . 7 ((𝑥𝑉 ∧ {𝑦𝜑} ∈ V) → (𝐹𝑥) = {𝑦𝜑})
82, 7mpan2 707 . . . . . 6 (𝑥𝑉 → (𝐹𝑥) = {𝑦𝜑})
98eleq2d 2687 . . . . 5 (𝑥𝑉 → (𝐵 ∈ (𝐹𝑥) ↔ 𝐵 ∈ {𝑦𝜑}))
109rexbiia 3040 . . . 4 (∃𝑥𝑉 𝐵 ∈ (𝐹𝑥) ↔ ∃𝑥𝑉 𝐵 ∈ {𝑦𝜑})
116, 10bitri 264 . . 3 (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝐵 ∈ {𝑦𝜑})
12 abfmpunirn.3 . . . . 5 (𝑦 = 𝐵 → (𝜑𝜓))
1312elabg 3351 . . . 4 (𝐵 ∈ V → (𝐵 ∈ {𝑦𝜑} ↔ 𝜓))
1413rexbidv 3052 . . 3 (𝐵 ∈ V → (∃𝑥𝑉 𝐵 ∈ {𝑦𝜑} ↔ ∃𝑥𝑉 𝜓))
1511, 14syl5bb 272 . 2 (𝐵 ∈ V → (𝐵 ran 𝐹 ↔ ∃𝑥𝑉 𝜓))
161, 15biadan2 674 1 (𝐵 ran 𝐹 ↔ (𝐵 ∈ V ∧ ∃𝑥𝑉 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wrex 2913  Vcvv 3200   cuni 4436  cmpt 4729  ran crn 5115   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  rabfmpunirn  29453  isrnsigaOLD  30175  isrnsiga  30176  isrnmeas  30263
  Copyright terms: Public domain W3C validator