| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absneu | Structured version Visualization version GIF version | ||
| Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) |
| Ref | Expression |
|---|---|
| absneu | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃!𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4187 | . . . . 5 ⊢ (𝑦 = 𝐴 → {𝑦} = {𝐴}) | |
| 2 | 1 | eqeq2d 2632 | . . . 4 ⊢ (𝑦 = 𝐴 → ({𝑥 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ 𝜑} = {𝐴})) |
| 3 | 2 | spcegv 3294 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝑥 ∣ 𝜑} = {𝐴} → ∃𝑦{𝑥 ∣ 𝜑} = {𝑦})) |
| 4 | 3 | imp 445 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
| 5 | euabsn2 4260 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | |
| 6 | 4, 5 | sylibr 224 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝑥 ∣ 𝜑} = {𝐴}) → ∃!𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∃!weu 2470 {cab 2608 {csn 4177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sn 4178 |
| This theorem is referenced by: rabsneu 4264 |
| Copyright terms: Public domain | W3C validator |