MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euabsn2 Structured version   Visualization version   GIF version

Theorem euabsn2 4260
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
euabsn2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem euabsn2
StepHypRef Expression
1 df-eu 2474 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 abeq1 2733 . . . 4 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 ∈ {𝑦}))
3 velsn 4193 . . . . . 6 (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦)
43bibi2i 327 . . . . 5 ((𝜑𝑥 ∈ {𝑦}) ↔ (𝜑𝑥 = 𝑦))
54albii 1747 . . . 4 (∀𝑥(𝜑𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑𝑥 = 𝑦))
62, 5bitri 264 . . 3 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
76exbii 1774 . 2 (∃𝑦{𝑥𝜑} = {𝑦} ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
81, 7bitr4i 267 1 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1481   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  {cab 2608  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sn 4178
This theorem is referenced by:  euabsn  4261  reusn  4262  absneu  4263  uniintab  4515  eusvobj2  6643
  Copyright terms: Public domain W3C validator