MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusn Structured version   Visualization version   GIF version

Theorem reusn 4262
Description: A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
reusn (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem reusn
StepHypRef Expression
1 euabsn2 4260 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃𝑦{𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
2 df-reu 2919 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 df-rab 2921 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43eqeq1i 2627 . . 3 ({𝑥𝐴𝜑} = {𝑦} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
54exbii 1774 . 2 (∃𝑦{𝑥𝐴𝜑} = {𝑦} ↔ ∃𝑦{𝑥 ∣ (𝑥𝐴𝜑)} = {𝑦})
61, 2, 53bitr4i 292 1 (∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  {cab 2608  ∃!wreu 2914  {crab 2916  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-reu 2919  df-rab 2921  df-v 3202  df-sn 4178
This theorem is referenced by:  reuen1  8025  cshwrepswhash1  15809  frcond3  27133  vdgn1frgrv2  27160  ddemeas  30299
  Copyright terms: Public domain W3C validator