| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5ant24 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| ad5ant24.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad5ant24 | ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad5ant24.1 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 450 | . . . . . . . 8 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2 | 2a1dd 51 | . . . . . . 7 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜏 → 𝜒)))) |
| 4 | 3 | a1ddd 80 | . . . . . 6 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜂 → (𝜏 → 𝜒))))) |
| 5 | 4 | com45 97 | . . . . 5 ⊢ (𝜑 → (𝜓 → (𝜃 → (𝜏 → (𝜂 → 𝜒))))) |
| 6 | 5 | com3r 87 | . . . 4 ⊢ (𝜃 → (𝜑 → (𝜓 → (𝜏 → (𝜂 → 𝜒))))) |
| 7 | 6 | com34 91 | . . 3 ⊢ (𝜃 → (𝜑 → (𝜏 → (𝜓 → (𝜂 → 𝜒))))) |
| 8 | 7 | imp 445 | . 2 ⊢ ((𝜃 ∧ 𝜑) → (𝜏 → (𝜓 → (𝜂 → 𝜒)))) |
| 9 | 8 | imp41 619 | 1 ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: metust 22363 clwlkclwwlklem2a4 26898 matunitlindflem1 33405 rexabslelem 39645 |
| Copyright terms: Public domain | W3C validator |