Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexabslelem Structured version   Visualization version   GIF version

Theorem rexabslelem 39645
Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
rexabslelem.1 𝑥𝜑
rexabslelem.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
rexabslelem (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Distinct variable groups:   𝑤,𝐴,𝑦,𝑧   𝑤,𝐵,𝑦,𝑧   𝜑,𝑤,𝑦,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rexabslelem
StepHypRef Expression
1 simp2 1062 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → 𝑦 ∈ ℝ)
2 rexabslelem.1 . . . . . . . 8 𝑥𝜑
3 nfv 1843 . . . . . . . 8 𝑥 𝑦 ∈ ℝ
4 nfra1 2941 . . . . . . . 8 𝑥𝑥𝐴 (abs‘𝐵) ≤ 𝑦
52, 3, 4nf3an 1831 . . . . . . 7 𝑥(𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
6 rexabslelem.2 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
763ad2antl1 1223 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
86recnd 10068 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
983ad2antl1 1223 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
109abscld 14175 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
111adantr 481 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
127leabsd 14153 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵 ≤ (abs‘𝐵))
13 rspa 2930 . . . . . . . . . 10 ((∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦𝑥𝐴) → (abs‘𝐵) ≤ 𝑦)
14133ad2antl3 1225 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (abs‘𝐵) ≤ 𝑦)
157, 10, 11, 12, 14letrd 10194 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → 𝐵𝑦)
1615ex 450 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (𝑥𝐴𝐵𝑦))
175, 16ralrimi 2957 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∀𝑥𝐴 𝐵𝑦)
18 breq2 4657 . . . . . . . 8 (𝑤 = 𝑦 → (𝐵𝑤𝐵𝑦))
1918ralbidv 2986 . . . . . . 7 (𝑤 = 𝑦 → (∀𝑥𝐴 𝐵𝑤 ↔ ∀𝑥𝐴 𝐵𝑦))
2019rspcev 3309 . . . . . 6 ((𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
211, 17, 20syl2anc 693 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤)
221renegcld 10457 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → -𝑦 ∈ ℝ)
236adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
24 simplr 792 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
25 absle 14055 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
2623, 24, 25syl2anc 693 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
27263adantl3 1219 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑦 ↔ (-𝑦𝐵𝐵𝑦)))
2814, 27mpbid 222 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → (-𝑦𝐵𝐵𝑦))
2928simpld 475 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) ∧ 𝑥𝐴) → -𝑦𝐵)
3029ex 450 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (𝑥𝐴 → -𝑦𝐵))
315, 30ralrimi 2957 . . . . . 6 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∀𝑥𝐴 -𝑦𝐵)
32 breq1 4656 . . . . . . . 8 (𝑧 = -𝑦 → (𝑧𝐵 ↔ -𝑦𝐵))
3332ralbidv 2986 . . . . . . 7 (𝑧 = -𝑦 → (∀𝑥𝐴 𝑧𝐵 ↔ ∀𝑥𝐴 -𝑦𝐵))
3433rspcev 3309 . . . . . 6 ((-𝑦 ∈ ℝ ∧ ∀𝑥𝐴 -𝑦𝐵) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)
3522, 31, 34syl2anc 693 . . . . 5 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)
3621, 35jca 554 . . . 4 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦) → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵))
37363exp 1264 . . 3 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵))))
3837rexlimdv 3030 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
39 renegcl 10344 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
4039adantl 482 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑧 ∈ ℝ)
41 simpl 473 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ∈ ℝ)
4240, 41ifcld 4131 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
4342ad5ant24 1305 . . . . . . . . . . 11 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
44 nfv 1843 . . . . . . . . . . . . . . . 16 𝑥 𝑤 ∈ ℝ
452, 44nfan 1828 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑤 ∈ ℝ)
46 nfra1 2941 . . . . . . . . . . . . . . 15 𝑥𝑥𝐴 𝐵𝑤
4745, 46nfan 1828 . . . . . . . . . . . . . 14 𝑥((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤)
48 nfv 1843 . . . . . . . . . . . . . 14 𝑥 𝑧 ∈ ℝ
4947, 48nfan 1828 . . . . . . . . . . . . 13 𝑥(((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ)
50 nfra1 2941 . . . . . . . . . . . . 13 𝑥𝑥𝐴 𝑧𝐵
5149, 50nfan 1828 . . . . . . . . . . . 12 𝑥((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵)
5242ad5ant23 1304 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
5352renegcld 10457 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
54 simpllr 799 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝑧 ∈ ℝ)
556ad5ant15 1303 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
56 max2 12018 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ∈ ℝ ∧ -𝑧 ∈ ℝ) → -𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
5741, 40, 56syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
5840, 42lenegd 10606 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ --𝑧))
5957, 58mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ --𝑧)
60 recn 10026 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
6160adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
6261negnegd 10383 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → --𝑧 = 𝑧)
6359, 62breqtrd 4679 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝑧)
6463ad5ant23 1304 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝑧)
65 rspa 2930 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 𝑧𝐵𝑥𝐴) → 𝑧𝐵)
6665adantll 750 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝑧𝐵)
6753, 54, 55, 64, 66letrd 10194 . . . . . . . . . . . . . . . 16 (((((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵)
6867ad5ant1345 1316 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → -if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵)
696ad5ant15 1303 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
70 simp-4r 807 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝑤 ∈ ℝ)
7142ad5ant24 1305 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
72 rspa 2930 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 𝐵𝑤𝑥𝐴) → 𝐵𝑤)
7372ad4ant24 1298 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵𝑤)
74 max1 12016 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ ℝ ∧ -𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7541, 40, 74syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7675ad5ant24 1305 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝑤 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7769, 70, 71, 73, 76letrd 10194 . . . . . . . . . . . . . . . 16 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7877adantlr 751 . . . . . . . . . . . . . . 15 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → 𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
7968, 78jca 554 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)))
806adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
81803adant2 1080 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
8242adantll 750 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
83823adant3 1081 . . . . . . . . . . . . . . . 16 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ)
8481, 83absled 14169 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))))
8584ad5ant135 1314 . . . . . . . . . . . . . 14 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ↔ (-if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ≤ 𝐵𝐵 ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))))
8679, 85mpbird 247 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) ∧ 𝑥𝐴) → (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
8786ex 450 . . . . . . . . . . . 12 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → (𝑥𝐴 → (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)))
8851, 87ralrimi 2957 . . . . . . . . . . 11 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → ∀𝑥𝐴 (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤))
89 breq2 4657 . . . . . . . . . . . . 13 (𝑦 = if(𝑤 ≤ -𝑧, -𝑧, 𝑤) → ((abs‘𝐵) ≤ 𝑦 ↔ (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)))
9089ralbidv 2986 . . . . . . . . . . . 12 (𝑦 = if(𝑤 ≤ -𝑧, -𝑧, 𝑤) → (∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ ∀𝑥𝐴 (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)))
9190rspcev 3309 . . . . . . . . . . 11 ((if(𝑤 ≤ -𝑧, -𝑧, 𝑤) ∈ ℝ ∧ ∀𝑥𝐴 (abs‘𝐵) ≤ if(𝑤 ≤ -𝑧, -𝑧, 𝑤)) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
9243, 88, 91syl2anc 693 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
9392exp31 630 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 𝐵𝑤) → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))
9493exp31 630 . . . . . . . 8 (𝜑 → (𝑤 ∈ ℝ → (∀𝑥𝐴 𝐵𝑤 → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))))
9594rexlimdv 3030 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))))
9695imp 445 . . . . . 6 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) → (𝑧 ∈ ℝ → (∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)))
9796rexlimdv 3030 . . . . 5 ((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) → (∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))
9897imp 445 . . . 4 (((𝜑 ∧ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤) ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
9998anasss 679 . . 3 ((𝜑 ∧ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦)
10099ex 450 . 2 (𝜑 → ((∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦))
10138, 100impbid 202 1 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 (abs‘𝐵) ≤ 𝑦 ↔ (∃𝑤 ∈ ℝ ∀𝑥𝐴 𝐵𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑥𝐴 𝑧𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wnf 1708  wcel 1990  wral 2912  wrex 2913  ifcif 4086   class class class wbr 4653  cfv 5888  cc 9934  cr 9935  cle 10075  -cneg 10267  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  rexabsle  39646
  Copyright terms: Public domain W3C validator