![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > assintopval | Structured version Visualization version GIF version |
Description: The associative (closed internal binary) operations for a set. (Contributed by AV, 20-Jan-2020.) |
Ref | Expression |
---|---|
assintopval | ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-assintop 41837 | . . 3 ⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑀 ∈ 𝑉 → assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚})) |
3 | fveq2 6191 | . . . 4 ⊢ (𝑚 = 𝑀 → ( clIntOp ‘𝑚) = ( clIntOp ‘𝑀)) | |
4 | breq2 4657 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑜 assLaw 𝑚 ↔ 𝑜 assLaw 𝑀)) | |
5 | 3, 4 | rabeqbidv 3195 | . . 3 ⊢ (𝑚 = 𝑀 → {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚} = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
6 | 5 | adantl 482 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑚 = 𝑀) → {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚} = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
7 | elex 3212 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
8 | fvex 6201 | . . . 4 ⊢ ( clIntOp ‘𝑀) ∈ V | |
9 | 8 | rabex 4813 | . . 3 ⊢ {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V |
10 | 9 | a1i 11 | . 2 ⊢ (𝑀 ∈ 𝑉 → {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀} ∈ V) |
11 | 2, 6, 7, 10 | fvmptd 6288 | 1 ⊢ (𝑀 ∈ 𝑉 → ( assIntOp ‘𝑀) = {𝑜 ∈ ( clIntOp ‘𝑀) ∣ 𝑜 assLaw 𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 class class class wbr 4653 ↦ cmpt 4729 ‘cfv 5888 assLaw casslaw 41820 clIntOp cclintop 41833 assIntOp cassintop 41834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-assintop 41837 |
This theorem is referenced by: assintopmap 41842 isassintop 41846 assintopcllaw 41848 |
Copyright terms: Public domain | W3C validator |