MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem2 Structured version   Visualization version   GIF version

Theorem mul02lem2 10213
Description: Lemma for mul02 10214. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem2 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem mul02lem2
StepHypRef Expression
1 ax-1ne0 10005 . 2 1 ≠ 0
2 ax-1cn 9994 . . . . . . . . 9 1 ∈ ℂ
3 mul02lem1 10212 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 1 ∈ ℂ) → 1 = (1 + 1))
42, 3mpan2 707 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = (1 + 1))
54eqcomd 2628 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (1 + 1) = 1)
65oveq2d 6666 . . . . . 6 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ((i · i) + (1 + 1)) = ((i · i) + 1))
7 ax-icn 9995 . . . . . . . . 9 i ∈ ℂ
87, 7mulcli 10045 . . . . . . . 8 (i · i) ∈ ℂ
98, 2, 2addassi 10048 . . . . . . 7 (((i · i) + 1) + 1) = ((i · i) + (1 + 1))
10 ax-i2m1 10004 . . . . . . . 8 ((i · i) + 1) = 0
1110oveq1i 6660 . . . . . . 7 (((i · i) + 1) + 1) = (0 + 1)
129, 11eqtr3i 2646 . . . . . 6 ((i · i) + (1 + 1)) = (0 + 1)
13 00id 10211 . . . . . . 7 (0 + 0) = 0
1410, 13eqtr4i 2647 . . . . . 6 ((i · i) + 1) = (0 + 0)
156, 12, 143eqtr3g 2679 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (0 + 1) = (0 + 0))
16 1re 10039 . . . . . 6 1 ∈ ℝ
17 0re 10040 . . . . . 6 0 ∈ ℝ
18 readdcan 10210 . . . . . 6 ((1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 1) = (0 + 0) ↔ 1 = 0))
1916, 17, 17, 18mp3an 1424 . . . . 5 ((0 + 1) = (0 + 0) ↔ 1 = 0)
2015, 19sylib 208 . . . 4 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 0)
2120ex 450 . . 3 (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 0))
2221necon1d 2816 . 2 (𝐴 ∈ ℝ → (1 ≠ 0 → (0 · 𝐴) = 0))
231, 22mpi 20 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937  ici 9938   + caddc 9939   · cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079
This theorem is referenced by:  mul02  10214  rexmul  12101  mbfmulc2lem  23414  i1fmulc  23470  itg1mulc  23471  stoweidlem34  40251  ztprmneprm  42125  nn0sumshdiglemA  42413  nn0sumshdiglem1  42415
  Copyright terms: Public domain W3C validator