| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axc11n | Structured version Visualization version GIF version | ||
| Description: Derive set.mm's original ax-c11n 34173 from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on 𝑥 and 𝑦, then this becomes an instance of aevlem 1981. Use aecom 2311 instead when this does not lengthen the proof. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 2-Jul-2021.) |
| Ref | Expression |
|---|---|
| axc11n | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dveeq1 2300 | . . . . 5 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 = 𝑧 → ∀𝑦 𝑥 = 𝑧)) | |
| 2 | 1 | com12 32 | . . . 4 ⊢ (𝑥 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑥 = 𝑧)) |
| 3 | axc11r 2187 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑥 𝑥 = 𝑧)) | |
| 4 | aev 1983 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥) | |
| 5 | 3, 4 | syl6 35 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑥 = 𝑧 → ∀𝑦 𝑦 = 𝑥)) |
| 6 | 2, 5 | syl9 77 | . . 3 ⊢ (𝑥 = 𝑧 → (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥))) |
| 7 | ax6evr 1942 | . . 3 ⊢ ∃𝑧 𝑥 = 𝑧 | |
| 8 | 6, 7 | exlimiiv 1859 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦 𝑦 = 𝑥)) |
| 9 | 8 | pm2.18d 124 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: aecom 2311 axi10 2599 wl-hbae1 33303 wl-ax11-lem3 33364 wl-ax11-lem8 33369 2sb5ndVD 39146 e2ebindVD 39148 e2ebindALT 39165 2sb5ndALT 39168 |
| Copyright terms: Public domain | W3C validator |