![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc11r | Structured version Visualization version GIF version |
Description: Same as axc11 2314 but with reversed antecedent. Note the use of ax-12 2047 (and not merely ax12v 2048). (Contributed by NM, 25-Jul-2015.) |
Ref | Expression |
---|---|
axc11r | ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-12 2047 | . . 3 ⊢ (𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥 → 𝜑))) | |
2 | 1 | sps 2055 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦(𝑦 = 𝑥 → 𝜑))) |
3 | pm2.27 42 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 = 𝑥 → 𝜑) → 𝜑)) | |
4 | 3 | al2imi 1743 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑦(𝑦 = 𝑥 → 𝜑) → ∀𝑦𝜑)) |
5 | 2, 4 | syld 47 | 1 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-ex 1705 |
This theorem is referenced by: ax12 2304 axc11n 2307 axc11nOLD 2308 axc11nOLDOLD 2309 axc11nALT 2310 axc11 2314 hbae 2315 dral1 2325 dral1ALT 2326 axpowndlem3 9421 axc11n11r 32673 bj-ax12v3ALT 32676 bj-axc11v 32747 bj-dral1v 32748 bj-hbaeb2 32805 |
Copyright terms: Public domain | W3C validator |