Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextprim Structured version   Visualization version   GIF version

Theorem axextprim 31578
Description: ax-ext 2602 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axextprim ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧))

Proof of Theorem axextprim
StepHypRef Expression
1 axextnd 9413 . 2 𝑥((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)
2 dfbi2 660 . . . . . 6 ((𝑥𝑦𝑥𝑧) ↔ ((𝑥𝑦𝑥𝑧) ∧ (𝑥𝑧𝑥𝑦)))
32imbi1i 339 . . . . 5 (((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ (((𝑥𝑦𝑥𝑧) ∧ (𝑥𝑧𝑥𝑦)) → 𝑦 = 𝑧))
4 impexp 462 . . . . 5 ((((𝑥𝑦𝑥𝑧) ∧ (𝑥𝑧𝑥𝑦)) → 𝑦 = 𝑧) ↔ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
53, 4bitri 264 . . . 4 (((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
65exbii 1774 . . 3 (∃𝑥((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ ∃𝑥((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
7 df-ex 1705 . . 3 (∃𝑥((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)) ↔ ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
86, 7bitri 264 . 2 (∃𝑥((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
91, 8mpbi 220 1 ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-cleq 2615  df-clel 2618  df-nfc 2753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator