| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axextprim | Structured version Visualization version Unicode version | ||
| Description: ax-ext 2602 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| axextprim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextnd 9413 |
. 2
| |
| 2 | dfbi2 660 |
. . . . . 6
| |
| 3 | 2 | imbi1i 339 |
. . . . 5
|
| 4 | impexp 462 |
. . . . 5
| |
| 5 | 3, 4 | bitri 264 |
. . . 4
|
| 6 | 5 | exbii 1774 |
. . 3
|
| 7 | df-ex 1705 |
. . 3
| |
| 8 | 6, 7 | bitri 264 |
. 2
|
| 9 | 1, 8 | mpbi 220 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |