Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axrepprim Structured version   Visualization version   GIF version

Theorem axrepprim 31579
Description: ax-rep 4771 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axrepprim ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))

Proof of Theorem axrepprim
StepHypRef Expression
1 axrepnd 9416 . 2 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
2 df-ex 1705 . . . . 5 (∃𝑦𝑧(𝜑𝑧 = 𝑦) ↔ ¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦))
3 df-an 386 . . . . . . . . . 10 ((∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑) ↔ ¬ (∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑))
43exbii 1774 . . . . . . . . 9 (∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑) ↔ ∃𝑥 ¬ (∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑))
5 exnal 1754 . . . . . . . . 9 (∃𝑥 ¬ (∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) ↔ ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑))
64, 5bitri 264 . . . . . . . 8 (∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑) ↔ ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑))
76bibi2i 327 . . . . . . 7 ((∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ (∀𝑦 𝑧𝑥 ↔ ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)))
8 dfbi1 203 . . . . . . 7 ((∀𝑦 𝑧𝑥 ↔ ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) ↔ ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))
97, 8bitri 264 . . . . . 6 ((∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))
109albii 1747 . . . . 5 (∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))
112, 10imbi12i 340 . . . 4 ((∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥))))
1211exbii 1774 . . 3 (∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥))))
13 df-ex 1705 . . 3 (∃𝑥(¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥))) ↔ ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥))))
1412, 13bitri 264 . 2 (∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥))))
151, 14mpbi 220 1 ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧𝑥 → ¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator