MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcgrrflx Structured version   Visualization version   GIF version

Theorem axtgcgrrflx 25361
Description: Axiom of reflexivity of congruence, Axiom A1 of [Schwabhauser] p. 10. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgcgrrflx.1 (𝜑𝑋𝑃)
axtgcgrrflx.2 (𝜑𝑌𝑃)
Assertion
Ref Expression
axtgcgrrflx (𝜑 → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem axtgcgrrflx
Dummy variables 𝑓 𝑖 𝑝 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 25352 . . . . 5 TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
2 inss1 3833 . . . . . 6 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ (TarskiGC ∩ TarskiGB)
3 inss1 3833 . . . . . 6 (TarskiGC ∩ TarskiGB) ⊆ TarskiGC
42, 3sstri 3612 . . . . 5 ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) ⊆ TarskiGC
51, 4eqsstri 3635 . . . 4 TarskiG ⊆ TarskiGC
6 axtrkg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
75, 6sseldi 3601 . . 3 (𝜑𝐺 ∈ TarskiGC)
8 axtrkg.p . . . . . 6 𝑃 = (Base‘𝐺)
9 axtrkg.d . . . . . 6 = (dist‘𝐺)
10 axtrkg.i . . . . . 6 𝐼 = (Itv‘𝐺)
118, 9, 10istrkgc 25353 . . . . 5 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
1211simprbi 480 . . . 4 (𝐺 ∈ TarskiGC → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
1312simpld 475 . . 3 (𝐺 ∈ TarskiGC → ∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥))
147, 13syl 17 . 2 (𝜑 → ∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥))
15 axtgcgrrflx.1 . . 3 (𝜑𝑋𝑃)
16 axtgcgrrflx.2 . . 3 (𝜑𝑌𝑃)
17 oveq1 6657 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑦) = (𝑋 𝑦))
18 oveq2 6658 . . . . 5 (𝑥 = 𝑋 → (𝑦 𝑥) = (𝑦 𝑋))
1917, 18eqeq12d 2637 . . . 4 (𝑥 = 𝑋 → ((𝑥 𝑦) = (𝑦 𝑥) ↔ (𝑋 𝑦) = (𝑦 𝑋)))
20 oveq2 6658 . . . . 5 (𝑦 = 𝑌 → (𝑋 𝑦) = (𝑋 𝑌))
21 oveq1 6657 . . . . 5 (𝑦 = 𝑌 → (𝑦 𝑋) = (𝑌 𝑋))
2220, 21eqeq12d 2637 . . . 4 (𝑦 = 𝑌 → ((𝑋 𝑦) = (𝑦 𝑋) ↔ (𝑋 𝑌) = (𝑌 𝑋)))
2319, 22rspc2v 3322 . . 3 ((𝑋𝑃𝑌𝑃) → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) → (𝑋 𝑌) = (𝑌 𝑋)))
2415, 16, 23syl2anc 693 . 2 (𝜑 → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) → (𝑋 𝑌) = (𝑌 𝑋)))
2514, 24mpd 15 1 (𝜑 → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3o 1036   = wceq 1483  wcel 1990  {cab 2608  wral 2912  {crab 2916  Vcvv 3200  [wsbc 3435  cdif 3571  cin 3573  {csn 4177  cfv 5888  (class class class)co 6650  cmpt2 6652  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  TarskiGCcstrkgc 25330  TarskiGBcstrkgb 25331  TarskiGCBcstrkgcb 25332  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-trkgc 25347  df-trkg 25352
This theorem is referenced by:  tgcgrcomimp  25372  tgcgrcomr  25373  tgcgrcoml  25374  tgcgrcomlr  25375  tgbtwnconn1lem1  25467  tgbtwnconn1lem2  25468  tgbtwnconn1lem3  25469  miriso  25565  symquadlem  25584  midexlem  25587  footex  25613  colperpexlem1  25622  opphllem  25627  cgraswap  25712  isoas  25744  f1otrg  25751
  Copyright terms: Public domain W3C validator