MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  miriso Structured version   Visualization version   GIF version

Theorem miriso 25565
Description: The point inversion function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 7.13 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
miriso.1 (𝜑𝑋𝑃)
miriso.2 (𝜑𝑌𝑃)
Assertion
Ref Expression
miriso (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))

Proof of Theorem miriso
Dummy variables 𝑥 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4 ((𝜑𝑋 = 𝐴) → 𝑋 = 𝐴)
21oveq1d 6665 . . 3 ((𝜑𝑋 = 𝐴) → (𝑋 𝑌) = (𝐴 𝑌))
3 mirval.p . . . 4 𝑃 = (Base‘𝐺)
4 mirval.d . . . 4 = (dist‘𝐺)
5 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
6 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
7 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
8 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
98adantr 481 . . . 4 ((𝜑𝑋 = 𝐴) → 𝐺 ∈ TarskiG)
10 mirval.a . . . . 5 (𝜑𝐴𝑃)
1110adantr 481 . . . 4 ((𝜑𝑋 = 𝐴) → 𝐴𝑃)
12 mirfv.m . . . 4 𝑀 = (𝑆𝐴)
13 miriso.2 . . . . 5 (𝜑𝑌𝑃)
1413adantr 481 . . . 4 ((𝜑𝑋 = 𝐴) → 𝑌𝑃)
153, 4, 5, 6, 7, 9, 11, 12, 14mircgr 25552 . . 3 ((𝜑𝑋 = 𝐴) → (𝐴 (𝑀𝑌)) = (𝐴 𝑌))
16 miriso.1 . . . . . 6 (𝜑𝑋𝑃)
1716adantr 481 . . . . 5 ((𝜑𝑋 = 𝐴) → 𝑋𝑃)
181eqcomd 2628 . . . . . 6 ((𝜑𝑋 = 𝐴) → 𝐴 = 𝑋)
1918oveq2d 6666 . . . . 5 ((𝜑𝑋 = 𝐴) → (𝐴 𝐴) = (𝐴 𝑋))
203, 4, 5, 9, 11, 17tgbtwntriv1 25386 . . . . 5 ((𝜑𝑋 = 𝐴) → 𝐴 ∈ (𝐴𝐼𝑋))
213, 4, 5, 6, 7, 9, 11, 12, 17, 11, 19, 20ismir 25554 . . . 4 ((𝜑𝑋 = 𝐴) → 𝐴 = (𝑀𝑋))
2221oveq1d 6665 . . 3 ((𝜑𝑋 = 𝐴) → (𝐴 (𝑀𝑌)) = ((𝑀𝑋) (𝑀𝑌)))
232, 15, 223eqtr2rd 2663 . 2 ((𝜑𝑋 = 𝐴) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
248adantr 481 . . . . . . . . . 10 ((𝜑𝑋𝐴) → 𝐺 ∈ TarskiG)
2524ad2antrr 762 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝐺 ∈ TarskiG)
2625ad6antr 772 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐺 ∈ TarskiG)
27 simplr 792 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝑥𝑃)
2827ad6antr 772 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑥𝑃)
2916adantr 481 . . . . . . . . 9 ((𝜑𝑋𝐴) → 𝑋𝑃)
3029ad8antr 776 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋𝑃)
3110adantr 481 . . . . . . . . . 10 ((𝜑𝑋𝐴) → 𝐴𝑃)
3231ad2antrr 762 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝐴𝑃)
3332ad6antr 772 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴𝑃)
3413adantr 481 . . . . . . . . . 10 ((𝜑𝑋𝐴) → 𝑌𝑃)
3534ad2antrr 762 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → 𝑌𝑃)
3635ad6antr 772 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌𝑃)
37 simp-4r 807 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑧𝑃)
383, 4, 5, 6, 7, 24, 31, 12, 29mircl 25556 . . . . . . . . . 10 ((𝜑𝑋𝐴) → (𝑀𝑋) ∈ 𝑃)
3938ad2antrr 762 . . . . . . . . 9 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → (𝑀𝑋) ∈ 𝑃)
4039ad6antr 772 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ 𝑃)
413, 4, 5, 6, 7, 24, 31, 12, 34mircl 25556 . . . . . . . . 9 ((𝜑𝑋𝐴) → (𝑀𝑌) ∈ 𝑃)
4241ad8antr 776 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ 𝑃)
433, 4, 5, 6, 7, 26, 33, 12, 30mirbtwn 25553 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ ((𝑀𝑋)𝐼𝑋))
44 simp-7r 813 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴)))
4544simpld 475 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ ((𝑀𝑋)𝐼𝑥))
463, 4, 5, 26, 40, 33, 30, 28, 43, 45tgbtwnexch3 25389 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ (𝐴𝐼𝑥))
473, 4, 5, 26, 33, 30, 28, 46tgbtwncom 25383 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ (𝑥𝐼𝐴))
483, 4, 5, 26, 40, 30, 28, 45tgbtwncom 25383 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋 ∈ (𝑥𝐼(𝑀𝑋)))
493, 4, 5, 26, 40, 33, 30, 43tgbtwncom 25383 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑋𝐼(𝑀𝑋)))
503, 4, 5, 26, 28, 30, 33, 40, 48, 49tgbtwnexch2 25391 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑥𝐼(𝑀𝑋)))
51 simpllr 799 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴)))
5251simpld 475 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ (𝑥𝐼𝑧))
533, 4, 5, 26, 28, 33, 40, 37, 50, 52tgbtwnexch3 25389 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ (𝐴𝐼𝑧))
543, 4, 5, 26, 33, 40, 37, 53tgbtwncom 25383 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑋) ∈ (𝑧𝐼𝐴))
55 simp-4r 807 . . . . . . . . . . . 12 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → 𝑦𝑃)
5655ad2antrr 762 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑦𝑃)
573, 4, 5, 6, 7, 26, 33, 12, 36mirbtwn 25553 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ ((𝑀𝑌)𝐼𝑌))
58 simp-5r 809 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
5958simpld 475 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ ((𝑀𝑌)𝐼𝑦))
603, 4, 5, 26, 42, 33, 36, 56, 57, 59tgbtwnexch3 25389 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ (𝐴𝐼𝑦))
613, 4, 5, 26, 33, 36, 56, 60tgbtwncom 25383 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ (𝑦𝐼𝐴))
623, 4, 5, 6, 7, 26, 33, 12, 30mircgr 25552 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 (𝑀𝑋)) = (𝐴 𝑋))
6358simprd 479 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝑦) = (𝑋 𝐴))
643, 4, 5, 26, 36, 56, 30, 33, 63tgcgrcomlr 25375 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝑌) = (𝐴 𝑋))
6562, 64eqtr4d 2659 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 (𝑀𝑋)) = (𝑦 𝑌))
6651simprd 479 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑋) 𝑧) = (𝑌 𝐴))
673, 4, 5, 26, 33, 40, 37, 56, 36, 33, 53, 61, 65, 66tgcgrextend 25380 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑧) = (𝑦 𝐴))
6844simprd 479 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝑥) = (𝑌 𝐴))
6968eqcomd 2628 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝐴) = (𝑋 𝑥))
703, 4, 5, 26, 56, 36, 33, 33, 30, 28, 61, 46, 64, 69tgcgrextend 25380 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝐴) = (𝐴 𝑥))
7167, 70eqtr2d 2657 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑥) = (𝐴 𝑧))
723, 4, 5, 26, 33, 28, 33, 37, 71tgcgrcomlr 25375 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝐴) = (𝑧 𝐴))
7362eqcomd 2628 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑋) = (𝐴 (𝑀𝑋)))
743, 4, 5, 26, 33, 30, 33, 40, 73tgcgrcomlr 25375 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝐴) = ((𝑀𝑋) 𝐴))
75 simplr 792 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑡𝑃)
763, 4, 5, 26, 42, 36, 56, 59tgbtwncom 25383 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑌 ∈ (𝑦𝐼(𝑀𝑌)))
773, 4, 5, 26, 42, 33, 36, 57tgbtwncom 25383 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑌𝐼(𝑀𝑌)))
783, 4, 5, 26, 56, 36, 33, 42, 76, 77tgbtwnexch2 25391 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑦𝐼(𝑀𝑌)))
79 simpr 477 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴)))
8079simpld 475 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ (𝑦𝐼𝑡))
813, 4, 5, 26, 56, 33, 42, 75, 78, 80tgbtwnexch3 25389 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ (𝐴𝐼𝑡))
823, 4, 5, 26, 33, 42, 75, 81tgbtwncom 25383 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑀𝑌) ∈ (𝑡𝐼𝐴))
833, 4, 5, 26, 30, 28, 36, 33, 68tgcgrcomlr 25375 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑋) = (𝐴 𝑌))
843, 4, 5, 6, 7, 26, 33, 12, 36mircgr 25552 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 (𝑀𝑌)) = (𝐴 𝑌))
8583, 84eqtr4d 2659 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑋) = (𝐴 (𝑀𝑌)))
8679simprd 479 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑌) 𝑡) = (𝑋 𝐴))
8786eqcomd 2628 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝐴) = ((𝑀𝑌) 𝑡))
883, 4, 5, 26, 28, 30, 33, 33, 42, 75, 47, 81, 85, 87tgcgrextend 25380 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝐴) = (𝐴 𝑡))
893, 4, 5, 26, 33, 75axtgcgrrflx 25361 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑡) = (𝑡 𝐴))
9088, 89eqtrd 2656 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝐴) = (𝑡 𝐴))
913, 4, 5, 26, 28, 33, 75, 33, 90tgcgrcomlr 25375 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑥) = (𝐴 𝑡))
9270, 91, 893eqtrd 2660 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝐴) = (𝑡 𝐴))
933, 4, 5, 26, 33, 42, 33, 36, 84tgcgrcomlr 25375 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑌) 𝐴) = (𝑌 𝐴))
9493eqcomd 2628 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝐴) = ((𝑀𝑌) 𝐴))
953, 4, 5, 26, 75, 37axtgcgrrflx 25361 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑡 𝑧) = (𝑧 𝑡))
96 simp-9r 817 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑋𝐴)
9796neneqd 2799 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ¬ 𝑋 = 𝐴)
9826adantr 481 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝐺 ∈ TarskiG)
9933adantr 481 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝐴𝑃)
10030adantr 481 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋𝑃)
10146adantr 481 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋 ∈ (𝐴𝐼𝑥))
102 simpr 477 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴)
103102oveq2d 6666 . . . . . . . . . . . . . . . . 17 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → (𝐴𝐼𝑥) = (𝐴𝐼𝐴))
104101, 103eleqtrd 2703 . . . . . . . . . . . . . . . 16 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋 ∈ (𝐴𝐼𝐴))
1053, 4, 5, 98, 99, 100, 104axtgbtwnid 25365 . . . . . . . . . . . . . . 15 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝐴 = 𝑋)
106105eqcomd 2628 . . . . . . . . . . . . . 14 (((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) ∧ 𝑥 = 𝐴) → 𝑋 = 𝐴)
10797, 106mtand 691 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ¬ 𝑥 = 𝐴)
108107neqned 2801 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝑥𝐴)
1093, 4, 5, 26, 28, 33, 40, 37, 50, 52tgbtwnexch 25393 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑥𝐼𝑧))
1103, 4, 5, 26, 56, 33, 42, 75, 78, 80tgbtwnexch 25393 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑦𝐼𝑡))
1113, 4, 5, 26, 56, 33, 75, 110tgbtwncom 25383 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → 𝐴 ∈ (𝑡𝐼𝑦))
1123, 4, 5, 26, 56, 33axtgcgrrflx 25361 . . . . . . . . . . . . 13 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝐴) = (𝐴 𝑦))
11367, 112eqtrd 2656 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑧) = (𝐴 𝑦))
1143, 4, 5, 26, 28, 75axtgcgrrflx 25361 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑡) = (𝑡 𝑥))
11591eqcomd 2628 . . . . . . . . . . . 12 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑡) = (𝐴 𝑥))
1163, 4, 5, 26, 28, 33, 37, 75, 33, 56, 75, 28, 108, 109, 111, 90, 113, 114, 115axtg5seg 25364 . . . . . . . . . . 11 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑧 𝑡) = (𝑦 𝑥))
11795, 116eqtr2d 2657 . . . . . . . . . 10 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑦 𝑥) = (𝑡 𝑧))
1183, 4, 5, 26, 56, 36, 33, 28, 75, 42, 33, 37, 61, 82, 92, 94, 117, 71tgifscgr 25403 . . . . . . . . 9 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑌 𝑥) = ((𝑀𝑌) 𝑧))
1193, 4, 5, 26, 36, 28, 42, 37, 118tgcgrcomlr 25375 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑥 𝑌) = (𝑧 (𝑀𝑌)))
12084eqcomd 2628 . . . . . . . 8 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝐴 𝑌) = (𝐴 (𝑀𝑌)))
1213, 4, 5, 26, 28, 30, 33, 36, 37, 40, 33, 42, 47, 54, 72, 74, 119, 120tgifscgr 25403 . . . . . . 7 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → (𝑋 𝑌) = ((𝑀𝑋) (𝑀𝑌)))
122121eqcomd 2628 . . . . . 6 ((((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) ∧ 𝑡𝑃) ∧ ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
123 simp-6l 810 . . . . . . 7 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → (𝜑𝑋𝐴))
124 simpllr 799 . . . . . . 7 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
12524ad2antrr 762 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝐺 ∈ TarskiG)
126 simplr 792 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝑦𝑃)
12741ad2antrr 762 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → (𝑀𝑌) ∈ 𝑃)
12829ad2antrr 762 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝑋𝑃)
12931ad2antrr 762 . . . . . . . 8 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → 𝐴𝑃)
1303, 4, 5, 125, 126, 127, 128, 129axtgsegcon 25363 . . . . . . 7 ((((𝜑𝑋𝐴) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → ∃𝑡𝑃 ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴)))
131123, 55, 124, 130syl21anc 1325 . . . . . 6 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → ∃𝑡𝑃 ((𝑀𝑌) ∈ (𝑦𝐼𝑡) ∧ ((𝑀𝑌) 𝑡) = (𝑋 𝐴)))
132122, 131r19.29a 3078 . . . . 5 ((((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) ∧ 𝑧𝑃) ∧ ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1333, 4, 5, 25, 27, 39, 35, 32axtgsegcon 25363 . . . . . 6 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → ∃𝑧𝑃 ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴)))
134133ad2antrr 762 . . . . 5 ((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → ∃𝑧𝑃 ((𝑀𝑋) ∈ (𝑥𝐼𝑧) ∧ ((𝑀𝑋) 𝑧) = (𝑌 𝐴)))
135132, 134r19.29a 3078 . . . 4 ((((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) ∧ 𝑦𝑃) ∧ (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1363, 4, 5, 24, 41, 34, 29, 31axtgsegcon 25363 . . . . 5 ((𝜑𝑋𝐴) → ∃𝑦𝑃 (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
137136ad2antrr 762 . . . 4 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → ∃𝑦𝑃 (𝑌 ∈ ((𝑀𝑌)𝐼𝑦) ∧ (𝑌 𝑦) = (𝑋 𝐴)))
138135, 137r19.29a 3078 . . 3 ((((𝜑𝑋𝐴) ∧ 𝑥𝑃) ∧ (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴))) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
1393, 4, 5, 24, 38, 29, 34, 31axtgsegcon 25363 . . 3 ((𝜑𝑋𝐴) → ∃𝑥𝑃 (𝑋 ∈ ((𝑀𝑋)𝐼𝑥) ∧ (𝑋 𝑥) = (𝑌 𝐴)))
140138, 139r19.29a 3078 . 2 ((𝜑𝑋𝐴) → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
14123, 140pm2.61dane 2881 1 (𝜑 → ((𝑀𝑋) (𝑀𝑌)) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by:  mirbtwni  25566  mircgrs  25568  mirmot  25570  miduniq  25580  ragcom  25593  colperpexlem1  25622  lmiisolem  25688  hypcgrlem2  25692  hypcgr  25693
  Copyright terms: Public domain W3C validator