| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi12i | Structured version Visualization version Unicode version | ||
| Description: The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| bibi2i.1 |
|
| bibi12i.2 |
|
| Ref | Expression |
|---|---|
| bibi12i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibi12i.2 |
. . 3
| |
| 2 | 1 | bibi2i 327 |
. 2
|
| 3 | bibi2i.1 |
. . 3
| |
| 4 | 3 | bibi1i 328 |
. 2
|
| 5 | 2, 4 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: pm5.32 668 orbidi 973 pm5.7 975 xorbi12i 1477 abbi 2737 brsymdif 4711 nfnid 4897 asymref 5512 isocnv2 6581 zfcndrep 9436 f1omvdco3 17869 brtxpsd 32001 bj-sbeq 32896 rp-fakeoranass 37859 rp-fakeinunass 37861 relexp0eq 37993 |
| Copyright terms: Public domain | W3C validator |