| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32 | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.32 | ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbi 309 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) ↔ (¬ 𝜓 ↔ ¬ 𝜒)) | |
| 2 | 1 | imbi2i 326 | . . 3 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒))) |
| 3 | pm5.74 259 | . . 3 ⊢ ((𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) ↔ ((𝜑 → ¬ 𝜓) ↔ (𝜑 → ¬ 𝜒))) | |
| 4 | notbi 309 | . . 3 ⊢ (((𝜑 → ¬ 𝜓) ↔ (𝜑 → ¬ 𝜒)) ↔ (¬ (𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜒))) | |
| 5 | 2, 3, 4 | 3bitri 286 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ (¬ (𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜒))) |
| 6 | df-an 386 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
| 7 | df-an 386 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ ¬ (𝜑 → ¬ 𝜒)) | |
| 8 | 6, 7 | bibi12i 329 | . 2 ⊢ (((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒)) ↔ (¬ (𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜒))) |
| 9 | 5, 8 | bitr4i 267 | 1 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: pm5.32i 669 pm5.32d 671 xordi 937 rabbi 3120 rabxfrd 4889 asymref 5512 mpt22eqb 6769 cfilucfil4 23118 wl-ax11-lem8 33369 relexp0eq 37993 2sb5nd 38776 2sb5ndVD 39146 2sb5ndALT 39168 |
| Copyright terms: Public domain | W3C validator |