| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axc14nf | Structured version Visualization version GIF version | ||
| Description: Proof of a version of axc14 2372 using the "non-free" idiom. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axc14nf | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnae 2318 | . 2 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑥 | |
| 2 | bj-nfeel2 32837 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → Ⅎ𝑧 𝑥 ∈ 𝑡) | |
| 3 | elequ2 2004 | . 2 ⊢ (𝑡 = 𝑦 → (𝑥 ∈ 𝑡 ↔ 𝑥 ∈ 𝑦)) | |
| 4 | 1, 2, 3 | bj-dvelimdv1 32835 | 1 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧 𝑥 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: bj-axc14 32839 |
| Copyright terms: Public domain | W3C validator |