Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid3 Structured version   Visualization version   GIF version

Theorem bj-elid3 33087
Description: Characterization of the elements of I. (Contributed by BJ, 29-Mar-2020.)
Assertion
Ref Expression
bj-elid3 (⟨𝐴, 𝐵⟩ ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-elid3
StepHypRef Expression
1 bj-elid 33085 . 2 (⟨𝐴, 𝐵⟩ ∈ I ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)))
2 opelxp 5146 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
32anbi1i 731 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)))
4 op1stg 7180 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
5 op2ndg 7181 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
64, 5eqeq12d 2637 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩) ↔ 𝐴 = 𝐵))
76pm5.32i 669 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
8 simpl 473 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
98anim1i 592 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐴 = 𝐵))
10 simpl 473 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐴 ∈ V)
11 eleq1 2689 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
1211biimpac 503 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐵 ∈ V)
13 simpr 477 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
1410, 12, 13jca31 557 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
159, 14impbii 199 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
167, 15bitri 264 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
173, 16bitri 264 . 2 ((⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
181, 17bitri 264 1 (⟨𝐴, 𝐵⟩ ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183   I cid 5023   × cxp 5112  cfv 5888  1st c1st 7166  2nd c2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  bj-eldiag2  33092
  Copyright terms: Public domain W3C validator