![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismoored2 | Structured version Visualization version GIF version |
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
Ref | Expression |
---|---|
bj-ismoored.1 | ⊢ (𝜑 → 𝐴 ∈ Moore) |
bj-ismoored.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
bj-ismoored2.3 | ⊢ (𝜑 → 𝐵 ≠ ∅) |
Ref | Expression |
---|---|
bj-ismoored2 | ⊢ (𝜑 → ∩ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ismoored.2 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | bj-ismoored2.3 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ ∅) | |
3 | intssuni2 4502 | . . . 4 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∩ 𝐵 ⊆ ∪ 𝐴) | |
4 | 1, 2, 3 | syl2anc 693 | . . 3 ⊢ (𝜑 → ∩ 𝐵 ⊆ ∪ 𝐴) |
5 | sseqin2 3817 | . . 3 ⊢ (∩ 𝐵 ⊆ ∪ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝐵) = ∩ 𝐵) | |
6 | 4, 5 | sylib 208 | . 2 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) = ∩ 𝐵) |
7 | bj-ismoored.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Moore) | |
8 | 7, 1 | bj-ismoored 33062 | . 2 ⊢ (𝜑 → (∪ 𝐴 ∩ ∩ 𝐵) ∈ 𝐴) |
9 | 6, 8 | eqeltrrd 2702 | 1 ⊢ (𝜑 → ∩ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ∪ cuni 4436 ∩ cint 4475 Moorecmoore 33057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-uni 4437 df-int 4476 df-bj-moore 33058 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |