Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismooredr Structured version   Visualization version   GIF version

Theorem bj-ismooredr 33064
Description: Sufficient condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismooredr.1 (𝜑𝐴𝑉)
bj-ismooredr.2 ((𝜑𝑥𝐴) → ( 𝐴 𝑥) ∈ 𝐴)
Assertion
Ref Expression
bj-ismooredr (𝜑𝐴Moore)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem bj-ismooredr
StepHypRef Expression
1 elpwi 4168 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
2 bj-ismooredr.2 . . . . . 6 ((𝜑𝑥𝐴) → ( 𝐴 𝑥) ∈ 𝐴)
32ex 450 . . . . 5 (𝜑 → (𝑥𝐴 → ( 𝐴 𝑥) ∈ 𝐴))
41, 3syl5 34 . . . 4 (𝜑 → (𝑥 ∈ 𝒫 𝐴 → ( 𝐴 𝑥) ∈ 𝐴))
54alrimiv 1855 . . 3 (𝜑 → ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ( 𝐴 𝑥) ∈ 𝐴))
6 df-ral 2917 . . 3 (∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ( 𝐴 𝑥) ∈ 𝐴))
75, 6sylibr 224 . 2 (𝜑 → ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴)
8 bj-ismooredr.1 . . 3 (𝜑𝐴𝑉)
9 bj-ismoore 33059 . . 3 (𝐴𝑉 → (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴))
108, 9syl 17 . 2 (𝜑 → (𝐴Moore ↔ ∀𝑥 ∈ 𝒫 𝐴( 𝐴 𝑥) ∈ 𝐴))
117, 10mpbird 247 1 (𝜑𝐴Moore)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481  wcel 1990  wral 2912  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   cint 4475  Moorecmoore 33057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-bj-moore 33058
This theorem is referenced by:  bj-discrmoore  33066
  Copyright terms: Public domain W3C validator