Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismoored2 Structured version   Visualization version   Unicode version

Theorem bj-ismoored2 33063
Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismoored.1  |-  ( ph  ->  A  e. Moore_ )
bj-ismoored.2  |-  ( ph  ->  B  C_  A )
bj-ismoored2.3  |-  ( ph  ->  B  =/=  (/) )
Assertion
Ref Expression
bj-ismoored2  |-  ( ph  ->  |^| B  e.  A
)

Proof of Theorem bj-ismoored2
StepHypRef Expression
1 bj-ismoored.2 . . . 4  |-  ( ph  ->  B  C_  A )
2 bj-ismoored2.3 . . . 4  |-  ( ph  ->  B  =/=  (/) )
3 intssuni2 4502 . . . 4  |-  ( ( B  C_  A  /\  B  =/=  (/) )  ->  |^| B  C_ 
U. A )
41, 2, 3syl2anc 693 . . 3  |-  ( ph  ->  |^| B  C_  U. A
)
5 sseqin2 3817 . . 3  |-  ( |^| B  C_  U. A  <->  ( U. A  i^i  |^| B )  = 
|^| B )
64, 5sylib 208 . 2  |-  ( ph  ->  ( U. A  i^i  |^| B )  =  |^| B )
7 bj-ismoored.1 . . 3  |-  ( ph  ->  A  e. Moore_ )
87, 1bj-ismoored 33062 . 2  |-  ( ph  ->  ( U. A  i^i  |^| B )  e.  A
)
96, 8eqeltrrd 2702 1  |-  ( ph  ->  |^| B  e.  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573    C_ wss 3574   (/)c0 3915   U.cuni 4436   |^|cint 4475  Moore_cmoore 33057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-uni 4437  df-int 4476  df-bj-moore 33058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator