Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfcsym Structured version   Visualization version   GIF version

Theorem bj-nfcsym 32886
Description: The class-form not-free predicate defines a symmetric binary relation on var metavariables (irreflexivity is proved by nfnid 4897 with additional axioms; see also nfcv 2764). This could be proved from aecom 2311 and nfcvb 4898 but the latter requires a domain with at least two objects (hence uses extra axioms). (Contributed by BJ, 30-Sep-2018.) Proof modification is discouraged to avoid use of eqcomd 2628 instead of equcomd 1946; removing dependency on ax-ext 2602 is possible: prove weak versions (i.e. replace classes with setvars) of drnfc1 2782, eleq2d 2687 (using elequ2 2004), nfcvf 2788, dvelimc 2787, dvelimdc 2786, nfcvf2 2789. (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nfcsym (𝑥𝑦𝑦𝑥)

Proof of Theorem bj-nfcsym
StepHypRef Expression
1 sp 2053 . . . 4 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
21equcomd 1946 . . 3 (∀𝑥 𝑥 = 𝑦𝑦 = 𝑥)
32drnfc1 2782 . 2 (∀𝑥 𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥))
4 nfcvf 2788 . . 3 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
5 nfcvf2 2789 . . 3 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
64, 52thd 255 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥𝑦𝑦𝑥))
73, 6pm2.61i 176 1 (𝑥𝑦𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wal 1481  wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-cleq 2615  df-clel 2618  df-nfc 2753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator