MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drnfc1 Structured version   Visualization version   GIF version

Theorem drnfc1 2782
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypothesis
Ref Expression
drnfc1.1 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
drnfc1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))

Proof of Theorem drnfc1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 drnfc1.1 . . . . 5 (∀𝑥 𝑥 = 𝑦𝐴 = 𝐵)
21eleq2d 2687 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑤𝐴𝑤𝐵))
32drnf1 2329 . . 3 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥 𝑤𝐴 ↔ Ⅎ𝑦 𝑤𝐵))
43dral2 2324 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑤𝑥 𝑤𝐴 ↔ ∀𝑤𝑦 𝑤𝐵))
5 df-nfc 2753 . 2 (𝑥𝐴 ↔ ∀𝑤𝑥 𝑤𝐴)
6 df-nfc 2753 . 2 (𝑦𝐵 ↔ ∀𝑤𝑦 𝑤𝐵)
74, 5, 63bitr4g 303 1 (∀𝑥 𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481   = wceq 1483  wnf 1708  wcel 1990  wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-cleq 2615  df-clel 2618  df-nfc 2753
This theorem is referenced by:  nfabd2  2784  nfcvb  4898  nfriotad  6619  bj-nfcsym  32886
  Copyright terms: Public domain W3C validator