Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nul Structured version   Visualization version   GIF version

Theorem bj-nul 33018
Description: Two formulations of the axiom of the empty set ax-nul 4789. Proposal: place it right before ax-nul 4789. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nul (∅ ∈ V ↔ ∃𝑥𝑦 ¬ 𝑦𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-nul
StepHypRef Expression
1 isset 3207 . 2 (∅ ∈ V ↔ ∃𝑥 𝑥 = ∅)
2 eq0 3929 . . 3 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
32exbii 1774 . 2 (∃𝑥 𝑥 = ∅ ↔ ∃𝑥𝑦 ¬ 𝑦𝑥)
41, 3bitri 264 1 (∅ ∈ V ↔ ∃𝑥𝑦 ¬ 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wal 1481   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator