![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nul | Structured version Visualization version GIF version |
Description: Two formulations of the axiom of the empty set ax-nul 4789. Proposal: place it right before ax-nul 4789. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nul | ⊢ (∅ ∈ V ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 3207 | . 2 ⊢ (∅ ∈ V ↔ ∃𝑥 𝑥 = ∅) | |
2 | eq0 3929 | . . 3 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
3 | 2 | exbii 1774 | . 2 ⊢ (∃𝑥 𝑥 = ∅ ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
4 | 1, 3 | bitri 264 | 1 ⊢ (∅ ∈ V ↔ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1481 = wceq 1483 ∃wex 1704 ∈ wcel 1990 Vcvv 3200 ∅c0 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-nul 3916 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |