Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nul Structured version   Visualization version   Unicode version

Theorem bj-nul 33018
Description: Two formulations of the axiom of the empty set ax-nul 4789. Proposal: place it right before ax-nul 4789. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nul  |-  ( (/)  e.  _V  <->  E. x A. y  -.  y  e.  x
)
Distinct variable group:    x, y

Proof of Theorem bj-nul
StepHypRef Expression
1 isset 3207 . 2  |-  ( (/)  e.  _V  <->  E. x  x  =  (/) )
2 eq0 3929 . . 3  |-  ( x  =  (/)  <->  A. y  -.  y  e.  x )
32exbii 1774 . 2  |-  ( E. x  x  =  (/)  <->  E. x A. y  -.  y  e.  x )
41, 3bitri 264 1  |-  ( (/)  e.  _V  <->  E. x A. y  -.  y  e.  x
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator