Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projeq Structured version   Visualization version   GIF version

Theorem bj-projeq 32980
Description: Substitution property for Proj. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projeq (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)))

Proof of Theorem bj-projeq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
2 simpl 473 . . . . . . 7 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐴 = 𝐶)
32sneqd 4189 . . . . . 6 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴} = {𝐶})
41, 3imaeq12d 5467 . . . . 5 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐵 “ {𝐴}) = (𝐷 “ {𝐶}))
54eleq2d 2687 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → ({𝑥} ∈ (𝐵 “ {𝐴}) ↔ {𝑥} ∈ (𝐷 “ {𝐶})))
65abbidv 2741 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})})
7 df-bj-proj 32979 . . 3 (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
8 df-bj-proj 32979 . . 3 (𝐶 Proj 𝐷) = {𝑥 ∣ {𝑥} ∈ (𝐷 “ {𝐶})}
96, 7, 83eqtr4g 2681 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷))
109ex 450 1 (𝐴 = 𝐶 → (𝐵 = 𝐷 → (𝐴 Proj 𝐵) = (𝐶 Proj 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  {csn 4177  cima 5117   Proj bj-cproj 32978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-bj-proj 32979
This theorem is referenced by:  bj-projeq2  32981
  Copyright terms: Public domain W3C validator