Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ssbcom3lem Structured version   Visualization version   Unicode version

Theorem bj-ssbcom3lem 32650
Description: Lemma for bj-ssbcom3 when setvar variables are disjoint. Remark: does not seem useful. (Contributed by BJ, 30-Dec-2020.)
Assertion
Ref Expression
bj-ssbcom3lem  |-  ([ t/ y]b[ y/ x]b ph  <-> [ t/ y]b[ t/ x]b ph )
Distinct variable group:    x, y, t
Allowed substitution hints:    ph( x, y, t)

Proof of Theorem bj-ssbcom3lem
StepHypRef Expression
1 equequ2 1953 . . . . . . 7  |-  ( y  =  t  ->  (
x  =  y  <->  x  =  t ) )
21imbi1d 331 . . . . . 6  |-  ( y  =  t  ->  (
( x  =  y  ->  ph )  <->  ( x  =  t  ->  ph )
) )
32pm5.74i 260 . . . . 5  |-  ( ( y  =  t  -> 
( x  =  y  ->  ph ) )  <->  ( y  =  t  ->  ( x  =  t  ->  ph )
) )
43albii 1747 . . . 4  |-  ( A. x ( y  =  t  ->  ( x  =  y  ->  ph )
)  <->  A. x ( y  =  t  ->  (
x  =  t  ->  ph ) ) )
5 19.21v 1868 . . . 4  |-  ( A. x ( y  =  t  ->  ( x  =  y  ->  ph )
)  <->  ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
6 19.21v 1868 . . . 4  |-  ( A. x ( y  =  t  ->  ( x  =  t  ->  ph )
)  <->  ( y  =  t  ->  A. x
( x  =  t  ->  ph ) ) )
74, 5, 63bitr3i 290 . . 3  |-  ( ( y  =  t  ->  A. x ( x  =  y  ->  ph ) )  <-> 
( y  =  t  ->  A. x ( x  =  t  ->  ph )
) )
87albii 1747 . 2  |-  ( A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) )  <->  A. y
( y  =  t  ->  A. x ( x  =  t  ->  ph )
) )
9 bj-ssb1 32633 . . . 4  |-  ([ y/ x]b ph  <->  A. x ( x  =  y  ->  ph )
)
109bj-ssbbii 32624 . . 3  |-  ([ t/ y]b[ y/ x]b ph  <-> [ t/ y]b A. x ( x  =  y  ->  ph ) )
11 bj-ssb1 32633 . . 3  |-  ([ t/ y]b A. x ( x  =  y  ->  ph )  <->  A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
1210, 11bitri 264 . 2  |-  ([ t/ y]b[ y/ x]b ph  <->  A. y ( y  =  t  ->  A. x
( x  =  y  ->  ph ) ) )
13 bj-ssb1 32633 . . . 4  |-  ([ t/ x]b ph  <->  A. x ( x  =  t  ->  ph )
)
1413bj-ssbbii 32624 . . 3  |-  ([ t/ y]b[ t/ x]b ph  <-> [ t/ y]b A. x ( x  =  t  ->  ph ) )
15 bj-ssb1 32633 . . 3  |-  ([ t/ y]b A. x ( x  =  t  ->  ph )  <->  A. y ( y  =  t  ->  A. x
( x  =  t  ->  ph ) ) )
1614, 15bitri 264 . 2  |-  ([ t/ y]b[ t/ x]b ph  <->  A. y ( y  =  t  ->  A. x
( x  =  t  ->  ph ) ) )
178, 12, 163bitr4i 292 1  |-  ([ t/ y]b[ y/ x]b ph  <-> [ t/ y]b[ t/ x]b ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481  [wssb 32619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-11 2034
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ssb 32620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator