![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.74i | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (inference rule). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.74 259 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: bitrd 268 imbi2i 326 bibi2d 332 ibib 357 ibibr 358 anclb 570 pm5.42 571 ancrb 573 cador 1547 equsalvw 1931 ax13b 1964 equsalv 2108 equsalhw 2123 equsal 2291 sbcom3 2411 2sb6rf 2452 ralbiia 2979 frinxp 5184 dfom2 7067 dfacacn 8963 kmlem8 8979 kmlem13 8984 kmlem14 8985 axgroth2 9647 rabeqsnd 29342 bnj1171 31068 bnj1253 31085 filnetlem4 32376 bj-ssb1a 32632 bj-ssb1 32633 bj-ssbcom3lem 32650 wl-sbcom3 33372 elintima 37945 |
Copyright terms: Public domain | W3C validator |