| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglss | Structured version Visualization version GIF version | ||
| Description: The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| bj-snglss | ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-elsngl 32956 | . . . . 5 ⊢ (𝑥 ∈ sngl 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}) | |
| 2 | df-rex 2918 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 𝑥 = {𝑦} ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 = {𝑦})) | |
| 3 | snssi 4339 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ⊆ 𝐴) | |
| 4 | sseq1 3626 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝑥 ⊆ 𝐴 ↔ {𝑦} ⊆ 𝐴)) | |
| 5 | 4 | biimparc 504 | . . . . . . . 8 ⊢ (({𝑦} ⊆ 𝐴 ∧ 𝑥 = {𝑦}) → 𝑥 ⊆ 𝐴) |
| 6 | 3, 5 | sylan 488 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = {𝑦}) → 𝑥 ⊆ 𝐴) |
| 7 | 6 | eximi 1762 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 = {𝑦}) → ∃𝑦 𝑥 ⊆ 𝐴) |
| 8 | 2, 7 | sylbi 207 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 𝑥 = {𝑦} → ∃𝑦 𝑥 ⊆ 𝐴) |
| 9 | 1, 8 | sylbi 207 | . . . 4 ⊢ (𝑥 ∈ sngl 𝐴 → ∃𝑦 𝑥 ⊆ 𝐴) |
| 10 | ax5e 1841 | . . . 4 ⊢ (∃𝑦 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐴) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑥 ∈ sngl 𝐴 → 𝑥 ⊆ 𝐴) |
| 12 | selpw 4165 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 13 | 11, 12 | sylibr 224 | . 2 ⊢ (𝑥 ∈ sngl 𝐴 → 𝑥 ∈ 𝒫 𝐴) |
| 14 | 13 | ssriv 3607 | 1 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∃wrex 2913 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 sngl bj-csngl 32953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 df-bj-sngl 32954 |
| This theorem is referenced by: bj-snglex 32961 bj-tagss 32968 |
| Copyright terms: Public domain | W3C validator |