Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpnzex Structured version   Visualization version   GIF version

Theorem bj-xpnzex 32946
Description: If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7108 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-xpnzex (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))

Proof of Theorem bj-xpnzex
StepHypRef Expression
1 0ex 4790 . . . . 5 ∅ ∈ V
2 eleq1a 2696 . . . . 5 (∅ ∈ V → (𝐵 = ∅ → 𝐵 ∈ V))
31, 2ax-mp 5 . . . 4 (𝐵 = ∅ → 𝐵 ∈ V)
43a1d 25 . . 3 (𝐵 = ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
54a1d 25 . 2 (𝐵 = ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V)))
6 xpnz 5553 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
7 xpexr2 7107 . . . . . 6 (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
87simprd 479 . . . . 5 (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V)
98expcom 451 . . . 4 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
106, 9sylbi 207 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
1110expcom 451 . 2 (𝐵 ≠ ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V)))
125, 11pm2.61ine 2877 1 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  c0 3915   × cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  bj-xpnzexb  32948
  Copyright terms: Public domain W3C validator