| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1023 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1023.1 | ⊢ ∃𝑥(𝜑 → 𝜓) |
| bnj1023.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| bnj1023 | ⊢ ∃𝑥(𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1023.2 | . . . . 5 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ ((𝜑 → 𝜓) → (𝜓 → 𝜒)) |
| 3 | 2 | ax-gen 1722 | . . 3 ⊢ ∀𝑥((𝜑 → 𝜓) → (𝜓 → 𝜒)) |
| 4 | bnj1023.1 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) | |
| 5 | exintr 1819 | . . 3 ⊢ (∀𝑥((𝜑 → 𝜓) → (𝜓 → 𝜒)) → (∃𝑥(𝜑 → 𝜓) → ∃𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜒)))) | |
| 6 | 3, 4, 5 | mp2 9 | . 2 ⊢ ∃𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜒)) |
| 7 | pm3.33 609 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜒)) → (𝜑 → 𝜒)) | |
| 8 | 6, 7 | bnj101 30789 | 1 ⊢ ∃𝑥(𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: bnj1098 30854 bnj1110 31050 bnj1118 31052 bnj1128 31058 bnj1145 31061 |
| Copyright terms: Public domain | W3C validator |